Cardiac motion and strain detection using 4D CT images: comparison with tagged MRI, and echocardiography

  • Vahid Tavakoli
  • Nima Sahba
Original Paper


Ischemic heart disease is a leading cause of death in the modern world. Coronary obstruction is the basis for ischemic heart disease and leads to decreased cardiac supply and decreased contractility of the myocardium. Recently, high quality 4D computed tomography (CT) has become available for cardiac imaging and provides the clinician with high quality anatomical images. In this article, a new method is proposed to detect 3D motion and strain from 4D cardiac CT images by constraining intensity constancy, myocardial volume changes and motion smoothness assumptions. The proposed method is validated by using manual tracking of the cardiac CT landmarks. The average error for the manual tracking, by an expert, was 2.9 ± 0.9 mm. As an additional validation, the cardiac CT strain values were compared to the cardiac tagged magnetic resonance imaging (MRI) and 2D B-mode echocardiography strain values of the same patients. The correlation ratio was significantly high for CT and tagged MRI radial strain values (r = 0.76, 95 % confidence interval, P < 0.001). The correlation ratio was meaningful for CT and echocardiography radial strain values as well (r = 0.67, 95 % confidence interval, P < 0.001). The correlation ratio for CT and tagged MRI circumferential strain values was acceptable (r = 0.73, 95 % confidence interval, P < 0.001), while the correlation ratio for CT and echocardiography circumferential strain values was good as well (r = 0.61, 95 % confidence interval, P < 0.001). In general, motion and strain values computed from cardiac CT images agree with motion and strain values computed from tagged MRI and echocardiography images.


Cardiac computed tomography Cardiac motion Cardiac strain Motion detection Strain detection 



Computed tomography


End diastolic volume


Ejection fraction




End systolic volume


Multi-detector computed tomography


Magnetic resonance imaging


Trans-esophageal echocardiography


Conflict of interest


Supplementary material

10554_2013_305_MOESM1_ESM.pptx (423 kb)
Supplementary material 1 (PPTX 423 kb)
10554_2013_305_MOESM2_ESM.pptx (95 kb)
Supplementary material 2 (PPTX 95 kb)


  1. 1.
    Kasper DL, Braunwald E, Fauci A (2008) Harrison’s principles of internal medicine, 17th edn. McGraw-Hill, New York, pp 237–290Google Scholar
  2. 2.
    Fuster V, O’Rourke R, Walsh R, Poole-Wilson P (2007) Hurst’s the heart, 12th edn. McGraw Hill, New York, pp 347–381Google Scholar
  3. 3.
    Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054PubMedCrossRefGoogle Scholar
  4. 4.
    Leschka S, Alkadhi H, Plass A, Desbiolles L, Grunenfelder J, Marincek B, Wildermuth S (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487PubMedCrossRefGoogle Scholar
  5. 5.
    Hoffmann MH, Shi H, Schmitz BL, Schmid FT, Lieberknecht M, Schulze R, Ludwig B, Kroschel U, jahnke N, Haerer W, Brambs HJ, Achoff AJ (2005) Noninvasive coronary angiography with multislice computed tomography. JAMA 293:2471–2478PubMedCrossRefGoogle Scholar
  6. 6.
    Mahnken AH, Spuntrup E, Wildberger JE, Heuschmid M, Niethammer M, Sinha AM, Flohr T, Bucker A, Gunther RW (2003) Quantification of cardiac function with multislice spiral CT using retrospective EKG-gating: comparison with MRI. Rofo 175:83–88PubMedCrossRefGoogle Scholar
  7. 7.
    Steigner ML, Otero HJ, Cai T, Mitsouras D, Nallamshetty L, Whitemore AG, Ersoy H, Levit NA, DiCarli MF, Rybicki FJ (2009) Narrowing the phase window width in prospectively ECG-gated single heart beat 320-detector row coronary CT angiography. Int J Cardiovasc Imaging 25:85–90PubMedCrossRefGoogle Scholar
  8. 8.
    Budoff MJ (2009) Maximizing dose reductions with cardiac CT. Int J Cardiovasc Imaging 25:279–287PubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hoogendoorn FM, Sukno S, Ordas S, Frangi AF (2009) Bilinear models for spatio-temporal point distribution analysis: application to extrapolation of left ventricular, biventricular and whole heart cardiac dynamics. Int J Computer V 85(3):237–252Google Scholar
  10. 10.
    van Rikxoort EM, Isgum I, Arzhaeva Y, Staring M, Klein S, Viergever MA et al (2010) Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus. Med Image Anal 14(1):39–49PubMedCrossRefGoogle Scholar
  11. 11.
    Ecabert O, Peters J, Schramm H, Lorenz C, von Berg J, Walker MJ et al (2008) Automatic model-based segmentation of the heart in CT images. IEEE Tran Med Imaging 27(9):1189–1201CrossRefGoogle Scholar
  12. 12.
    Horn BKP, Schunck BG (1981) Determining optical flow. Artif Intell 17:185–203CrossRefGoogle Scholar
  13. 13.
    Hamilton WF, Rompf JH (1932) Movement of the base of the ventricle and the relative constancy of the cardiac volume. Am J Physiol 132:559–565Google Scholar
  14. 14.
    Bowman AW, Kovacs SJ (2003) Assessment and consequences of the constant volume attribute of the four-chamber heart. Am J Physiol Heart Circ Physiol 285:2027–2033Google Scholar
  15. 15.
    Hoffman EA, Ritman EL (1985) Invariant total heart volume in the intact thorax. Am J Physiol Heart Circ Physiol 249:883–890Google Scholar
  16. 16.
    Hoffman EA, Ritman EL (1987) Heart-lung interaction: effect of regional lung air content and total heart volume. Ann Biomed Eng 15:241–257PubMedCrossRefGoogle Scholar
  17. 17.
    Bistoquet A, Oshinshi J, Skrinjar O (2007) Left ventricular deformation recovery from cine MRI using an incompressible model. IEEE Trans Med Imaging 26(9):1136–1153PubMedCrossRefGoogle Scholar
  18. 18.
    Tavakoli V, Amini A (2013) A survey of shaped-based registration and segmentation techniques for cardiac images. Comput Vis Image Underst 117(9):966–989Google Scholar
  19. 19.
    Arts T, Prinzen FW, Delhaas T, Milles J, Rossi A, Clarysse P (2010) Mapping displacement and deformation of the heart with local sine wave modeling. IEEE Trans Med Imag 29(5):1114–1123CrossRefGoogle Scholar
  20. 20.
    Tavakoli V, Sahba N, Ahmadian A, Abolhassani MD, Rizi, FY, Amini A (2008) Adaptive multi-resolution myocardial motion analysis of b-mode echocardiography images using combined local/global optical flow, IEEE proceeding on Bioinformatics and Biomedical Engineering (iCBBE) 2033-2036Google Scholar
  21. 21.
    Buck T, Hunold P, Wentz KU, Tkalec W, Nesser HJ, Erbel R (1997) Tomographic three-dimensional echocardiographic determination of chamber size and systolic function in patients with left ventricular aneurysm. Circulation 96:4286–4297PubMedCrossRefGoogle Scholar
  22. 22.
    Qin JX, Jones M, Shiota T, Greenberg NL, Tsujino H, Firstenberg MS, Gupta PC, Zetts AD, Xu Y, Ping Sun J, Cardon LA, Odabashian JA, Flamm SD, White RD, Panza JA, Thomas JD (2000) Validation of real-time three-dimensional echocardiography for quantifying left ventricular volumes in the presence of a left ventricular aneurysm: in vitro and in vivo studies. J Am Coll Cardiol 36:900–907PubMedCrossRefGoogle Scholar
  23. 23.
    Bavelaar-Croon CD, Kayser HW, van der Wall EE, de Roose A, Dibbets-Schneider P, Pauwel EK, Germano G, Atsma DE (2000) Left ventricular function: correlation of quantitative gated SPECT and MR imaging over a wide range of values. Radiology 217:572–575PubMedCrossRefGoogle Scholar
  24. 24.
    Mochizuki T, Murase K, Higashino H, Koyama Y, Doi M, Miyagawa M, Nakata S, Shimuzu K, Ikezoe J (2000) Two- and three-dimensional CT ventriculography: a new application of helical CT. AJR Am J Roentgenol 174:203–208PubMedCrossRefGoogle Scholar
  25. 25.
    Lessick J, Sideman S, Azhari H, Marcus M, Grenadier E, Beyar R (1991) Regional three-dimensional geometry and function of left ventricles with fibrous aneurysms: a cine-computed tomography study. Circulation 84:1072–1086PubMedCrossRefGoogle Scholar
  26. 26.
    Lipton MJ, Higgins CB, Farmer D, Boyd DP (1984) Cardiac imaging with a high-speed cine-CT scanner: preliminary results. Radiology 152:579–582PubMedGoogle Scholar
  27. 27.
    Lipton MJ, Farmer DW, Killebrew EJ, Bouchard A, Dean PB, Ringertz HG, Higgins CB (1985) Regional myocardial dysfunction: evaluation of patients with prior myocardial infarction with fast CT. Radiology 157:735–740PubMedGoogle Scholar
  28. 28.
    Rees MR, Feiring AJ, Rumberger JA, MacMillan RM, Clark DL (1986) Heart evaluation by cine CT: use of two new oblique views. Radiology 159:804–806PubMedGoogle Scholar
  29. 29.
    Pattynama PM, Lamb HJ, van der Velde EA, van der Wall EE, de Roos A (1993) Left ventricular measurements with cine and spin-echo MR imaging: a study of reproducibility with variance component analysis. Radiology 187:261–268PubMedGoogle Scholar
  30. 30.
    Yamamuro M, Tadamura E, Kubo S, Toyoda S, Nishina T, Ohba M, Hosokawa R, Kimora T, Tamaki N, Komeda M, Kita T, Konishi J (2005) Cardiac functional analysis with multi-detector row CT and segmental reconstruction algorithm: comparison with echocardiography, SPECT, and MR imaging. Radiology 234:381–390PubMedCrossRefGoogle Scholar
  31. 31.
    Dewey M, Müller M, Eddicks S, Schnapauff D, Teige F, Rutsch W, Borges AC, Hamm B (2006) Evaluation of global and regional left ventricular function with 16-slice computed tomography, biplane cineventriculography, and two-dimensional Transthoracic echocardiography: comparison with magnetic resonance imaging. J Am Coll Cardiol 48(10):2034–2044PubMedCrossRefGoogle Scholar
  32. 32.
    Nasis A, Moir S, Seneviratne SK, Cameron JD, Mottram PM (2012) Assessment of left ventricular volumes, ejection fraction and regional wall motion with retrospective electrocardiogram triggered 320-detector computed tomography: a comparison with 2D-echocardiography. Int J Cardiovasc Imaging 28(4):955–963PubMedCrossRefGoogle Scholar
  33. 33.
    Butler J, Shapiro MD, Jassal D (2007) Comparison of multidetector computed tomography and two-dimensional transthoracic echocardiography for left ventricular assessment in patients with heart failure. Am J Cardiol 99:247–249PubMedCrossRefGoogle Scholar
  34. 34.
    Ko SM, Kim YJ, Park JH, Choi NM (2010) Assessment of left ventricular ejection fraction and regional wall motion with 64-slice multidetector CT: a comparison with two-dimensional transthoracic echocardiography. Br J Radiol 83:28–34PubMedCrossRefGoogle Scholar
  35. 35.
    Henneman MM, Schuijf JD, Jukema JW, Holman ER, Lamb HJ, de Roos A, van der Wall EE, Bax JJ (2006) Assessment of global and regional left ventricular function and volumes with 64-slice MSCT: a comparison with 2D echocardiography. J Nucl Cardiol 13:480–487PubMedCrossRefGoogle Scholar
  36. 36.
    Fischbach R, Juergens KU, Ozgun M, Maintz D, Grude M, Seifarth H et al (2007) Assessment of regional left ventricular function with multidetector-row computed tomography versus magnetic resonance imaging. Eur Radiol 17:1009–1017PubMedCrossRefGoogle Scholar
  37. 37.
    Cury RC, Nieman K, Shapiro MD, Butler J, Nomura CH, Ferencik M, Hoffmann U, Abbara S, Jassal DS, Yasuda T, Gold HK, Jang IK, Brady TJ (2008) Comprehensive assessment of myocardial perfusion defects, regional wall motion, and left ventricular function by using 64-slice multidetector CT. Radiology 248:466–475PubMedCrossRefGoogle Scholar
  38. 38.
    Naderi N, Ojaghi Haghighi Z, Amin A, Naghashzadeh F, Bakhshandeh H, Taghavi S, Maleki M (2013) Utility of right ventricular strain imaging in predicting pulmonary vascular resistance in patients with pulmonary hypertension. Congest Heart Fail 19:116–122PubMedCrossRefGoogle Scholar
  39. 39.
    Rajagopalan N, Simon MA, Shah H (2008) Utility of right ventricular tissue doppler imaging: correlation with right heart catheterization. Echocardiography 25:706–711PubMedCrossRefGoogle Scholar
  40. 40.
    Dambrauskaite V, Delcroix M, Claus P (2007) Regional right ventricular dysfunction in chronic pulmonary hypertension. J Am Soc Echocardiogr 20:1172–1180PubMedCrossRefGoogle Scholar
  41. 41.
    Zhu Y, Papademetris X, Sinusas AJ, Duncan JS (2010) A coupled deformable model for tracking myocardial borders from real-time echocardiography using an incompressibility constraint. Med Imag Anal 14(3):429–448CrossRefGoogle Scholar
  42. 42.
    Tavakoli V, Sahba N (2013) Assessment of age-related changes in left ventricular twist by 3-dimensional speckle-tracking echocardiography. J Ultrasound Med 32(8):1435–1441Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Room 309A, Department of RadiologyYale UniversityNew HavenUSA
  2. 2.Department of Biomedical EngineeringUniversity of Tehran, Science and Research BranchTehranIran

Personalised recommendations