Impact of white blood cell count on myocardial salvage, infarct size, and clinical outcomes in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: a magnetic resonance imaging study

  • Seungmin Chung
  • Young Bin Song
  • Joo-Yong Hahn
  • Sung-A Chang
  • Sang-Chol Lee
  • Yeon Hyeon Choe
  • Seung-Hyuk Choi
  • Jin-Ho Choi
  • Sang Hoon Lee
  • Jae K. Oh
  • Hyeon-Cheol Gwon
Original Paper


We sought to determine the relationship between white blood cell count (WBCc) and infarct size assessed by cardiovascular magnetic resonance imaging (CMR) in patients undergoing primary percutaneous coronary intervention (PCI) for ST-elevation myocardial infarction (STEMI). In 198 patients undergoing primary PCI for STEMI, WBCc was measured upon arrival and CMR was performed a median of 7 days after the index event. Infarct size was measured on delayed enhancement imaging and the area at risk (AAR) was quantified on T2-weighted images. Baseline characteristics were not significantly different between the high WBCc group (>11,000/mm3, n = 91) and low WBCc group (≤11,000/mm3, n = 107). The median infarct size was larger in the high WBCc group than in the low WBCc group [22.0 % (16.7–33.9) vs. 14.7 % (8.5–24.7), p < 0.01]. Compared with the low WBCc group, the high WBCc group had a greater extent of AAR and a smaller myocardial salvage index [MSI = (AAR−infarct size)/AAR × 100]. The major adverse cardiovascular events (MACE) including cardiac death, nonfatal reinfarction, and rehospitalization for congestive heart failure at 12-month occurred more frequently in the high WBCc group (12.1 vs. 0.9 %, p < 0.01). In multivariate analysis, high WBCc significantly increased the risk of a large infarct (OR 3.04 95 % CI 1.65–5.61, p < 0.01), a low MSI (OR 2.08, 95 % CI 1.13–3.86, p = 0.02), and 1-year MACE (OR 16.0, 95 % CI 1.89–134.5, p = 0.01). In patients undergoing primary PCI for STEMI, an elevated baseline WBCc is associated with less salvaged myocardium, larger infarct size and poorer clinical outcomes.


Myocardial infarction White blood cell Magnetic resonance imaging 


Conflict of interest



  1. 1.
    Barron HV, Cannon CP, Murphy SA et al (2000) Association between white blood cell count, epicardial blood flow, myocardial perfusion, and clinical outcomes in the setting of acute myocardial infarction: a thrombolysis in myocardial infarction 10 substudy. Circulation 102(19):2329–2334PubMedCrossRefGoogle Scholar
  2. 2.
    Palmerini T, Mehran R, Dangas G et al (2011) Impact of leukocyte count on mortality and bleeding in patients with myocardial infarction undergoing primary percutaneous coronary interventions: analysis from the harmonizing outcome with revascularization and stent in acute myocardial infarction trial. Circulation 123(24):2829–2837 2827 p following 2837PubMedCrossRefGoogle Scholar
  3. 3.
    Barron HV, Harr SD, Radford MJ et al (2001) The association between white blood cell count and acute myocardial infarction mortality in patients >or = 65 years of age: findings from the cooperative cardiovascular project. J Am Coll Cardiol 38(6):1654–1661PubMedCrossRefGoogle Scholar
  4. 4.
    Cannon CP, McCabe CH, Wilcox RG et al (2001) Association of white blood cell count with increased mortality in acute myocardial infarction and unstable angina pectoris. OPUS-TIMI 16 Investigators. Am J Cardiol 87(5):636–639 A610PubMedCrossRefGoogle Scholar
  5. 5.
    Dall’Armellina E, Karamitsos TD, Neubauer S et al (2010) CMR for characterization of the myocardium in acute coronary syndromes. Nat Rev Cardiol 7(11):624–636PubMedCrossRefGoogle Scholar
  6. 6.
    Eitel I, Desch S, Fuernau G et al (2010) Prognostic significance and determinants of myocardial salvage assessed by cardiovascular magnetic resonance in acute reperfused myocardial infarction. J Am Coll Cardiol 55(22):2470–2479PubMedCrossRefGoogle Scholar
  7. 7.
    Husser O, Bodi V, Sanchis J et al (2011) White blood cell subtypes after STEMI: temporal evolution, association with cardiovascular magnetic resonance–derived infarct size and impact on outcome. Inflammation 34(2):73–84PubMedCrossRefGoogle Scholar
  8. 8.
    Jo HS, Park JS, Sohn JW et al (2011) Culprit-lesion-only versus multivessel revascularization using drug-eluting stents in patients with ST-segment elevation myocardial infarction: a korean acute myocardial infarction registry-based analysis. Korean Circ J 41(12):718–725PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Van ‘t Hof AW, Liem A, Suryapranata H et al (1998) Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Zwolle Myocardial Infarction Study Group. Circulation 97(23):2302–2306CrossRefGoogle Scholar
  10. 10.
    Song YB, Hahn JY, Gwon HC et al (2012) A high loading dose of clopidogrel reduces myocardial infarct size in patients undergoing primary percutaneous coronary intervention: a magnetic resonance imaging study. Am Heart J 163(3):500–507PubMedCrossRefGoogle Scholar
  11. 11.
    Choe YH, Choo KS, Jeon ES et al (2008) Comparison of MDCT and MRI in the detection and sizing of acute and chronic myocardial infarcts. Eur J Radiol 66(2):292–299PubMedCrossRefGoogle Scholar
  12. 12.
    Ganame J, Messalli G, Dymarkowski S et al (2009) Impact of myocardial haemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction. Eur Heart J 30(12):1440–1449PubMedCrossRefGoogle Scholar
  13. 13.
    Kratz A, Ferraro M, Sluss PM et al (2004) Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Laboratory reference values. N Engl J Med 351(15):1548–1563PubMedCrossRefGoogle Scholar
  14. 14.
    Cutlip DE, Windecker S, Mehran R et al (2007) Clinical end points in coronary stent trials: a case for standardized definitions. Circulation 115(17):2344–2351PubMedCrossRefGoogle Scholar
  15. 15.
    Patel MR, Mahaffey KW, Armstrong PW et al (2005) Prognostic usefulness of white blood cell count and temperature in acute myocardial infarction (from the CARDINAL Trial). Am J Cardiol 95(5):614–618PubMedCrossRefGoogle Scholar
  16. 16.
    Prasad A, Stone GW, Stuckey TD et al (2007) Relation between leucocyte count, myonecrosis, myocardial perfusion, and outcomes following primary angioplasty. Am J Cardiol 99(8):1067–1071PubMedCrossRefGoogle Scholar
  17. 17.
    Dogan I, Karaman K, Sonmez B et al (2009) Relationship between serum neutrophil count and infarct size in patients with acute myocardial infarction. Nucl Med Commun 30(10):797–801PubMedCrossRefGoogle Scholar
  18. 18.
    Abdel-Aty H, Zagrosek A, Schulz-Menger J et al (2004) Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation 109(20):2411–2416PubMedCrossRefGoogle Scholar
  19. 19.
    Friedrich MG, Abdel-Aty H, Taylor A et al (2008) The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J Am Coll Cardiol 51(16):1581–1587PubMedCrossRefGoogle Scholar
  20. 20.
    Abdel-Aty H, Cocker M, Meek C et al (2009) Edema as a very early marker for acute myocardial ischemia: a cardiovascular magnetic resonance study. J Am Coll Cardiol 53(14):1194–1201PubMedCrossRefGoogle Scholar
  21. 21.
    Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357(11):1121–1135PubMedCrossRefGoogle Scholar
  22. 22.
    Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53(1):31–47PubMedCrossRefGoogle Scholar
  23. 23.
    Madjid M, Awan I, Willerson JT et al (2004) Leukocyte count and coronary heart disease: implications for risk assessment. J Am Coll Cardiol 44(10):1945–1956PubMedCrossRefGoogle Scholar
  24. 24.
    Lee HY, Kim JH, Kim BO et al (2011) Effect of aspiration thrombectomy on microvascular dysfunction in ST-segment elevation myocardial infarction with an elevated neutrophil count. Korean Circ J 41(2):68–75PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Pellizzon GG, Dixon SR, Stone GW et al (2003) Relation of admission white blood cell count to long-term outcomes after primary coronary angioplasty for acute myocardial infarction (The Stent PAMI Trial). Am J Cardiol 91(6):729–731PubMedCrossRefGoogle Scholar
  26. 26.
    Smit JJ, Ottervanger JP, Slingerland RJ et al (2008) Comparison of usefulness of C-reactive protein versus white blood cell count to predict outcome after primary percutaneous coronary intervention for ST elevation myocardial infarction. Am J Cardiol 101(4):446–451PubMedCrossRefGoogle Scholar
  27. 27.
    Ndrepepa G, Braun S, Iijima R et al (2009) Total leucocyte count, but not C-reactive protein, predicts 1-year mortality in patients with acute coronary syndromes treated with percutaneous coronary intervention. Clin Sci Lond 116(8):651–658PubMedCrossRefGoogle Scholar
  28. 28.
    Henriques JP, Zijlstra F, van ‘t Hof AW et al (2003) Angiographic assessment of reperfusion in acute myocardial infarction by myocardial blush grade. Circulation 107(16):2115–2119PubMedCrossRefGoogle Scholar
  29. 29.
    Brener SJ, Maehara A, Dizon JM et al (2013) Relationship between myocardial reperfusion, infarct size, and mortality: the INFUSE-AMI (intracoronary abciximab and aspiration thrombectomy in patients with large anterior myocardial infarction) trial. JACC Cardiovasc Interv 6(7):718–724PubMedCrossRefGoogle Scholar
  30. 30.
    Riedle N, Dickhaus H, Erbacher M et al (2010) Early assessment of infarct size and prediction of functional recovery by quantitative myocardial blush grade in patients with acute coronary syndromes treated according to current guidelines. Catheter Cardiovasc Interv 76(4):502–510PubMedCrossRefGoogle Scholar
  31. 31.
    Brener SJ, Cristea E, Mehran R et al (2011) Relationship between angiographic dynamic and densitometric assessment of myocardial reperfusion and survival in patients with acute myocardial infarction treated with primary percutaneous coronary intervention: the harmonizing outcomes with revascularization and stents in AMI (HORIZONS-AMI) trial. Am Heart J 162(6):1044–1051PubMedCrossRefGoogle Scholar
  32. 32.
    Gurm HS, Bhatt DL, Lincoff AM et al (2003) Impact of preprocedural white blood cell count on long term mortality after percutaneous coronary intervention: insights from the EPIC, EPILOG, and EPISTENT trials. Heart 89(10):1200–1204PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Seungmin Chung
    • 1
  • Young Bin Song
    • 1
  • Joo-Yong Hahn
    • 1
  • Sung-A Chang
    • 1
    • 2
  • Sang-Chol Lee
    • 1
    • 2
  • Yeon Hyeon Choe
    • 2
    • 3
  • Seung-Hyuk Choi
    • 1
  • Jin-Ho Choi
    • 1
  • Sang Hoon Lee
    • 1
  • Jae K. Oh
    • 2
  • Hyeon-Cheol Gwon
    • 1
  1. 1.Division of Cardiology, Cardiac and Vascular Center, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
  2. 2.Cardiovascular Imaging Center, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
  3. 3.Department of Radiology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea

Personalised recommendations