The International Journal of Cardiovascular Imaging

, Volume 29, Issue 7, pp 1491–1498 | Cite as

Comparison of high-resolution MRI with CT angiography and digital subtraction angiography for the evaluation of middle cerebral artery atherosclerotic steno-occlusive disease

Original Paper


Intracranial atherosclerotic disease is increasingly recognized as a major stroke subtype worldwide. Current diagnostic evaluation of atherosclerotic disease of the middle cerebral artery (MCA) relies on detection of stenoses with luminographic imaging studies that do not directly visualize plaque unlike high-resolution MRI. This retrospective study seeks to evaluate the accuracy of high-resolution MRI vessel wall imaging, computed tomographic angiography (CTA) and digital subtraction angiography (DSA) in measuring the degree of stenosis within the MCA. 28 recently symptomatic patients with MCA territory symptoms underwent preliminary imaging with CTA followed by high-resolution MRI at 3-Tesla and definitive imaging with DSA for detection of M1 territory steno-occlusive lesions. Measurements of MCA segments on MRI and CTA were compared with reference to DSA values. Sensitivity and specificity of high-resolution MRI vessel wall imaging, CTA using maximum intensity projection (MIP) and CTA using volume rendering (VR) for the detection of stenosis > 50 % and occlusion were 80.0 and 53.6 %, 72.2 and 72.7 %, and 77.8 and 18.2 %, respectively. MRI-derived values correlated better with DSA (Spearman R = 0.68, p < 0.01) than CTA MIP and VR (Spearman R = 0.45, 0.22; p = 0.02, 0.24, respectively). High-resolution MRI of the MCA is capable of accurately measuring the degree of stenosis and is more sensitive than CTA in a sample of high-risk, symptomatic patients. This study, combined with previous reports, supports the potential of morphological MRI to measure intracranial atherosclerotic plaque non-invasively.


Middle cerebral artery Stenosis MRI CTA DSA Stroke 



This study was supported by National Key Project of Scientific and Technical Supporting Programs funded by Ministry of Science & Technology of China during the 11th 5-year Plan (No. 2007BAI05B07), BHF PG/11/74/29100 and the NIHR Cambridge Biomedical Research Centre.

Conflict of interest



  1. 1.
    WHO (2004) Causes of death. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  2. 2.
    Feigin VL, Lawes CM, Bennett DA, Anderson CS (2003) Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2:43–53PubMedCrossRefGoogle Scholar
  3. 3.
    Feigin VL (2005) Stroke epidemiology in the developing world. Lancet 365:2160–2161PubMedCrossRefGoogle Scholar
  4. 4.
    Gorelick PB, Wong KS, Bae HJ, Pandey DK (2008) Large artery intracranial occlusive disease: a large worldwide burden but a relatively neglected frontier. Stroke 39:2396–2399PubMedCrossRefGoogle Scholar
  5. 5.
    De Silva DA, Woon FP, Lee MP, Chen CP, Chang HM, Wong MC (2007) South Asian patients with ischemic stroke: intracranial large arteries are the predominant site of disease. Stroke 38:2592–2594PubMedCrossRefGoogle Scholar
  6. 6.
    Wong LK (2006) Global burden of intracranial atherosclerosis. Int J Stroke 1:158–159PubMedCrossRefGoogle Scholar
  7. 7.
    Arenillas JF (2011) Intracranial atherosclerosis: current concepts. Stroke 42:S20–S23PubMedCrossRefGoogle Scholar
  8. 8.
    Sacco RL, Kargman DE, Gu Q, Zamanillo MC (1995) Race-ethnicity and determinants of intracranial atherosclerotic cerebral infarction. The Northern Manhattan Stroke Study. Stroke 26:14–20PubMedCrossRefGoogle Scholar
  9. 9.
    Feldmann E, Wilterdink JL, Kosinski A, Lynn M, Chimowitz MI, Sarafin J et al (2007) The stroke outcomes and neuroimaging of intracranial atherosclerosis (SONIA) trial. Neurology 68:2099–2106PubMedCrossRefGoogle Scholar
  10. 10.
    Itoh T, Matsumoto M, Handa N, Maeda H, Hougaku H, Hashimoto H et al (1993) Rate of successful recording of blood flow signals in the middle cerebral artery using transcranial Doppler sonography. Stroke 24:1192–1195PubMedCrossRefGoogle Scholar
  11. 11.
    Seidel G, Kaps M, Gerriets T (1995) Potential and limitations of transcranial color-coded sonography in stroke patients. Stroke 26:2061–2066PubMedCrossRefGoogle Scholar
  12. 12.
    Heiserman JE, Dean BL, Hodak JA, Flom RA, Bird CR, Drayer BP, et al (1994) Neurologic complications of cerebral angiography. AJNR Am J Neuroradiol 15:1401–1407; discussion 1408–1411Google Scholar
  13. 13.
    Willinsky RA, Taylor SM, TerBrugge K, Farb RI, Tomlinson G, Montanera W (2003) Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology 227:522–528PubMedCrossRefGoogle Scholar
  14. 14.
    Shrier DA, Tanaka H, Numaguchi Y, Konno S, Patel U, Shibata D (1997) CT angiography in the evaluation of acute stroke. AJNR Am J Neuroradiol 18:1011–1020PubMedGoogle Scholar
  15. 15.
    Wong KS, Liang EY, Lam WW, Huang YN, Kay R (1995) Spiral computed tomography angiography in the assessment of middle cerebral artery occlusive disease. J Neurol Neurosurg Psychiatry 59:537–539PubMedCrossRefGoogle Scholar
  16. 16.
    Skutta B, Furst G, Eilers J, Ferbert A, Kuhn FP (1999) Intracranial stenoocclusive disease: double-detector helical CT angiography versus digital subtraction angiography. AJNR Am J Neuroradiol 20:791–799PubMedGoogle Scholar
  17. 17.
    Nguyen-Huynh MN, Wintermark M, English J, Lam J, Vittinghoff E, Smith WS et al (2008) How accurate is CT angiography in evaluating intracranial atherosclerotic disease? Stroke 39:1184–1188PubMedCrossRefGoogle Scholar
  18. 18.
    Bendib K, Poirier C, Croisille P, Roux JP, Revel D (1999) Amiel M [Characterization of arterial stenosis using 3D imaging. Comparison of 3 imaging techniques (MRI, spiral CT and 3D DSA) and 4 display methods (MIP, SR, MPVR, VA) by using physical phantoms)]. J Radiol 80:1561–1567PubMedGoogle Scholar
  19. 19.
    Willinek WA, Born M, Simon B, Tschampa HJ, Krautmacher C, Gieseke J et al (2003) Time-of-flight MR angiography: comparison of 3.0-T imaging and 1.5-T imaging–initial experience. Radiology 229:913–920PubMedCrossRefGoogle Scholar
  20. 20.
    Choi CG, Lee DH, Lee JH, Pyun HW, Kang DW, Kwon SU et al (2007) Detection of intracranial atherosclerotic steno-occlusive disease with 3D time-of-flight magnetic resonance angiography with sensitivity encoding at 3T. AJNR Am J Neuroradiol 28:439–446PubMedCrossRefGoogle Scholar
  21. 21.
    Muhlenbruch G, Das M, Mommertz G, Schaaf M, Langer S, Mahnken AH et al (2010) Comparison of dual-source CT angiography and MR angiography in preoperative evaluation of intra- and extracranial vessels: a pilot study. Eur Radiol 20:469–476PubMedCrossRefGoogle Scholar
  22. 22.
    Wong KS, Lam WW, Liang E, Huang YN, Chan YL, Kay R (1996) Variability of magnetic resonance angiography and computed tomography angiography in grading middle cerebral artery stenosis. Stroke 27:1084–1087PubMedCrossRefGoogle Scholar
  23. 23.
    Swartz RH, Bhuta SS, Farb RI, Agid R, Willinsky RA, Terbrugge KG et al (2009) Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology 72:627–634PubMedCrossRefGoogle Scholar
  24. 24.
    Xu WH, Li ML, Gao S, Ni J, Zhou LX, Yao M et al (2010) In vivo high-resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis. Atherosclerosis 212:507–511PubMedCrossRefGoogle Scholar
  25. 25.
    Li ML, Xu WH, Song L, Feng F, You H, Ni J et al (2009) Atherosclerosis of middle cerebral artery: evaluation with high-resolution MR imaging at 3T. Atherosclerosis 204:447–452PubMedCrossRefGoogle Scholar
  26. 26.
    Niizuma K, Shimizu H, Takada S, Tominaga T (2008) Middle cerebral artery plaque imaging using 3-Tesla high-resolution MRI. J Clin Neurosci 15:1137–1141PubMedCrossRefGoogle Scholar
  27. 27.
    Klein IF, Lavallee PC, Touboul PJ, Schouman-Claeys E, Amarenco P (2006) In vivo middle cerebral artery plaque imaging by high-resolution MRI. Neurology 67:327–329PubMedCrossRefGoogle Scholar
  28. 28.
    Weimar C, Goertler M, Harms L, Diener HC (2006) Distribution and outcome of symptomatic stenoses and occlusions in patients with acute cerebral ischemia. Arch Neurol 63:1287–1291PubMedCrossRefGoogle Scholar
  29. 29.
    Kern R, Steinke W, Daffertshofer M, Prager R, Hennerici M (2005) Stroke recurrences in patients with symptomatic vs asymptomatic middle cerebral artery disease. Neurology 65:859–864PubMedCrossRefGoogle Scholar
  30. 30.
    Tang CW, Chang FC, Chern CM, Lee YC, Hu HH, Lee IH (2011) Stenting versus medical treatment for severe symptomatic intracranial stenosis. AJNR Am J Neuroradiol 32:911–916Google Scholar
  31. 31.
    Ni J, Yao M, Gao S, Cui LY (2011) Stroke risk and prognostic factors of asymptomatic middle cerebral artery atherosclerotic stenosis. J Neurol Sci 301:63–65PubMedCrossRefGoogle Scholar
  32. 32.
    Wong KS, Ng PW, Tang A, Liu R, Yeung V, Tomlinson B (2007) Prevalence of asymptomatic intracranial atherosclerosis in high-risk patients. Neurology 68:2035–2038PubMedCrossRefGoogle Scholar
  33. 33.
    Saba L, Sanfilippo R, Montisci R, Mallarini G (2010) Assessment of intracranial arterial stenosis with multidetector row CT angiography: a postprocessing techniques comparison. AJNR Am J Neuroradiol 31:874–879PubMedCrossRefGoogle Scholar
  34. 34.
    Samuels OB, Joseph GJ, Lynn MJ, Smith HA, Chimowitz MI (2000) A standardized method for measuring intracranial arterial stenosis. AJNR Am J Neuroradiol 21:643–646PubMedGoogle Scholar
  35. 35.
    Mohammad Y, Qattan M, Prabhakaran S (2010) Epidemiology and pathophysiology of intracranial large artery stenosis. Open Atherosclerosis Thromb J 3:3–7CrossRefGoogle Scholar
  36. 36.
    Buerke B, Wittkamp G, Seifarth H, Heindel W, Kloska SP (2009) Dual-energy CTA with bone removal for transcranial arteries: intraindividual comparison with standard CTA without bone removal and TOF-MRA. Acad Radiol 16:1348–1355PubMedCrossRefGoogle Scholar
  37. 37.
    Bash S, Villablanca JP, Jahan R, Duckwiler G, Tillis M, Kidwell C et al (2005) Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. Am J Neuroradiol 26:1012–1021PubMedGoogle Scholar
  38. 38.
    Villablanca JP, Rodriguez FJ, Stockman T, Dahliwal S, Omura M, Hazany S et al (2007) MDCT angiography for detection and quantification of small intracranial arteries: comparison with conventional catheter angiography. AJR Am J Roentgenol 188:593–602PubMedCrossRefGoogle Scholar
  39. 39.
    Prokop M, Shin HO, Schanz A, SchaeferProkop CM (1997) Use of maximum intensity projections in CT angiography: a basic review. Radiographics 17:433–451PubMedGoogle Scholar
  40. 40.
    Kuszyk BS, Heath DG, Johnson PT, Eng J, Fishman EK (1999) CT angiography with volume rendering for quantifying vascular stenoses: in vitro validation of accuracy. Am J Roentgenol 173:449–455CrossRefGoogle Scholar
  41. 41.
    Lopez-Cancio E, Dorado L, Millan M, Reverte S, Sunol A, Massuet A et al (2011) The population-based Barcelona-Asymptomatic Intracranial Atherosclerosis Study (ASIA): rationale and design. BMC Neurol 11:22PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Qi Liu
    • 1
  • Jun Huang
    • 1
  • Andrew J. Degnan
    • 2
    • 3
  • Shiyue Chen
    • 1
  • Jonathan H. Gillard
    • 2
  • Zhongzhao Teng
    • 2
  • Jianping Lu
    • 1
  1. 1.Department of Radiology, Changhai HospitalThe 2nd Military Medical UniversityShanghaiChina
  2. 2.University Department of RadiologyUniversity of CambridgeCambridgeUK
  3. 3.University of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations