Myocardial density analysis utilizing automated myocardial defect analysis software on resting 320-detector MDCT

  • John M. Troupis
  • Alex Karge
  • Sujith Seneviratne
  • Arthur Nasis
  • Eileen C. Ang
  • Brian S. Ko
  • Dee Nandurkar
  • Eldho Paul
  • Roland Hilling-Smith
  • James Cameron
Original Paper


Cardiac CT myocardial perfusion is an emerging tool utilizing differences in myocardial density of ischemic compared to normal myocardium. We sought to document the contrast enhanced density profile of myocardial segments subtended by severely stenotic coronary arteries on rest (non stress) cardiac CT imaging, and compare the density with identical segments without ischemic disease. 100 cardiac CT studies were identified resulting in 25 normal patients, 37 with severe left anterior descending artery stenosis, 14 with severe left circumflex artery stenosis, and 24 with severe right coronary artery stenosis. The studies were reviewed on a workstation with dedicated myocardial analysis software. Left anterior descending artery ischemic segments (apical anterior and apical septal) measured 82.2 (±3) and 102 (±3) Hounsfield unit (HU) respectively comparing with non-ischemic segments 89 (±4) and 109 (±4) HU respectively (both P values 0.16). Left circumflex artery segments (basal anterolateral and mid anterolateral) demonstrated 80 (±4) and 76 (±4) HU respectively compared to non-ischemic segments, 89 (±4) and 87 (±4) HU (P value 0.13 and 0.07 respectively). Right coronary artery ischemic segments (basal inferoseptal and basal inferior) measured 104 (±3) and 105 (±3) HU respectively and these compared with non-ischemic segments, 102 (±4) and 105 (±4) HU respectively (P Value 0.69 and 0.94 respectively). Comparison of ischemic myocardial segments with non-ischemic segments demonstrated no significant difference in myocardial density. In prospectively acquired resting 320 multi detector CT, the myocardium subtended by severely stenotic vessels demonstrates no significant density difference compared with those supplied by vessels with no stenosis, confirming that myocardial ischaemia cannot be reliably detected on rest coronary computed tomography angiography by qualitative nor quantitative assessment.


Cardiac computed tomography angiography (CCTA) Perfusion Myocardial density 



Coronary computed tomography angiography


Coronary artery disease


Minimum intensity projections


Multiplanar reconstructions


Hounsfield unit


Percutaneous intervention


Left anterior descending artery


Left circumflex artery


Right coronary artery


Multi detector CT


Conflict of interest

All of the above co authors disclose that there is neither conflict of interest nor financial disclosure for this manuscript.


  1. 1.
    Schlett CL, Banerji D, Siegel E et al (2011) Prognostic value of CT angiography for major adverse cardiac events in patients with acute chest pain from the emergency department: 2-year outcomes of the ROMICAT trial. JACC Cardiovasc Imaging 4:481–491PubMedCrossRefGoogle Scholar
  2. 2.
    Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. J Am Coll Cardiol 52:1724–1732PubMedCrossRefGoogle Scholar
  3. 3.
    Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557PubMedCrossRefGoogle Scholar
  4. 4.
    Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747PubMedCrossRefGoogle Scholar
  5. 5.
    Sarno G, Decraemer I, Vanhoenacker PK et al (2009) On the inappropriateness of noninvasive multidetector computed tomography coronary angiography to trigger coronary revascularization: a comparison with invasive angiography. JACC Cardiovasc Interv 2:550–557PubMedCrossRefGoogle Scholar
  6. 6.
    Schuijf JD, Wijns W, Jukema JW et al (2006) Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol 48:2508–2514PubMedCrossRefGoogle Scholar
  7. 7.
    Rispler S, Keidar Z, Ghersin E et al (2007) Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol 49:1059–1067PubMedCrossRefGoogle Scholar
  8. 8.
    Shaw LJ, Berman DS, Maron DJ et al (2008) Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the clinical outcomes utilizing revascularization and aggressive drug evaluation (COURAGE) trial nuclear substudy. Circulation 117:1283–1291PubMedCrossRefGoogle Scholar
  9. 9.
    Tonino PA, De Bruyne B, Pijls NH et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224PubMedCrossRefGoogle Scholar
  10. 10.
    Pijls NH, Fearon WF, Tonino PA et al (2010) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (fractional flow reserve versus angiography for multivessel evaluation) study. J Am Coll Cardiol 56:177–184PubMedCrossRefGoogle Scholar
  11. 11.
    Ko BS, Cameron JD, Defrance T, Seneviratne SK (2011) CT stress myocardial perfusion imaging using multidetector CT—a review. J Cardiovasc Comput Tomogr 5:345–356PubMedCrossRefGoogle Scholar
  12. 12.
    Ko BS, Cameron JD, Meredith IT et al (2012) Computed tomography stress myocardial perfusion imaging in patients considered for revascularization: a comparison with fractional flow reserve. Eur Heart J 33:67–77PubMedCrossRefGoogle Scholar
  13. 13.
    George RT, Arbab-Zadeh A, Miller JM et al (2009) Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging: a pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia. Circ Cardiovasc Imaging 2:174–182PubMedCrossRefGoogle Scholar
  14. 14.
    Ghoshhajra BB, Maurovich-Horvat P, Techasith T et al (2012) Infarct detection with a comprehensive cardiac CT protocol. J Cardiovasc Comput Tomogr 6:14–23PubMedCrossRefGoogle Scholar
  15. 15.
    Mehra VC, Valdiviezo C, Arbab-Zadeh A et al (2011) A stepwise approach to the visual interpretation of CT-based myocardial perfusion. J Cardiovasc Comput Tomogr 5:357–369PubMedCrossRefGoogle Scholar
  16. 16.
    Nagao M, Matsuoka H, Kawakami H et al (2009) Myocardial ischemia in acute coronary syndrome: assessment using 64-MDCT. AJR Am J Roentgenol 193:1097–1106PubMedCrossRefGoogle Scholar
  17. 17.
    Nagao M, Matsuoka H, Kawakami H et al (2009) Detection of myocardial ischemia using 64-slice MDCT. Circ J 73:905–911PubMedCrossRefGoogle Scholar
  18. 18.
    Ghoshhajra BB, Rogers IS, Maurovich-Horvat P et al (2011) A comparison of reconstruction and viewing parameters on image quality and accuracy of stress myocardial CT perfusion. J Cardiovasc Comput Tomogr 5:459–466PubMedCrossRefGoogle Scholar
  19. 19.
    Rogers IS, Cury RC, Blankstein R et al (2010) Comparison of postprocessing techniques for the detection of perfusion defects by cardiac computed tomography in patients presenting with acute ST-segment elevation myocardial infarction. J Cardiovasc Comput Tomogr 4:258–266PubMedCrossRefGoogle Scholar
  20. 20.
    Rodriguez-Granillo GA, Rosales MA, Degrossi E, Rodriguez AE (2010) Signal density of left ventricular myocardial segments and impact of beam hardening artifact: implications for myocardial perfusion assessment by multidetector CT coronary angiography. Int J Cardiovasc Imaging 26:345–354PubMedCrossRefGoogle Scholar
  21. 21.
    Crossett MP, Schneider-Kolsky M, Troupis J (2011) Normal perfusion of the left ventricular myocardium using 320 MDCT. J Cardiovasc Comput Tomogr 5:406–411PubMedCrossRefGoogle Scholar
  22. 22.
    Stadler A, Schima W, Prager G et al (2004) CT density measurements for characterization of adrenal tumors ex vivo: variability among three CT scanners. AJR Am J Roentgenol 182:671–675PubMedCrossRefGoogle Scholar
  23. 23.
    Kitagawa K, George RT, Arbab-Zadeh A, Lima JA, Lardo AC (2010) Characterization and correction of beam-hardening artifacts during dynamic volume CT assessment of myocardial perfusion. Radiology 256:111–118PubMedCrossRefGoogle Scholar
  24. 24.
    Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542PubMedCrossRefGoogle Scholar
  25. 25.
    Lamash YLJ, Gringauz A (2011) An automatic method for the identification and quantification of myocardial perfusion defects or infarction from cardiac CT images. IEEE international symposium on biomedical imaging: from nano to macro, 2011, pp 1314–1317. doi: 10.1109/ISBI.2011.5872642
  26. 26.
    Rybicki FJ, Otero HJ, Steigner ML et al (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24:535–546PubMedCrossRefGoogle Scholar
  27. 27.
    Steigner ML, Mitsouras D, Whitmore AG et al (2010) Iodinated contrast opacification gradients in normal coronary arteries imaged with prospectively ECG-gated single heart beat 320-detector row computed tomography. Circ Cardiovasc Imaging 3:179–186PubMedCrossRefGoogle Scholar
  28. 28.
    Chow BJ, Kass M, Gagne O et al (2011) Can differences in corrected coronary opacification measured with computed tomography predict resting coronary artery flow? J Am Coll Cardiol 57:1280–1288PubMedCrossRefGoogle Scholar
  29. 29.
    Nagao M, Matsuoka H, Kawakami H et al (2008) Quantification of myocardial perfusion by contrast-enhanced 64-MDCT: characterization of ischemic myocardium. AJR Am J Roentgenol 191:19–25PubMedCrossRefGoogle Scholar
  30. 30.
    Chan W, Ellims AH, Duffy SJ, Kaye DM, Taylor AJ (2011) Principles, current status and clinical implications of ischemic heart disease assessment by cardiac magnetic resonance imaging. Intern Med JGoogle Scholar
  31. 31.
    Kim ST, Lee H, Paik SH, Park JS (2012) Apical-sparing variant of stress cardiomyopathy: integrative analysis with multidetector row cardiac computed tomography in dual-energy mode. J Cardiovasc Comput Tomogr 6:140–142PubMedCrossRefGoogle Scholar
  32. 32.
    So A, Lee TY, Imai Y et al (2011) Quantitative myocardial perfusion imaging using rapid kVp switch dual-energy CT: preliminary experience. J Cardiovasc Comput Tomogr 5:430–442PubMedCrossRefGoogle Scholar
  33. 33.
    Arnoldi E, Lee YS, Ruzsics B et al (2011) CT detection of myocardial blood volume deficits: dual-energy CT compared with single-energy CT spectra. J Cardiovasc Comput Tomogr 5:421–429PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • John M. Troupis
    • 1
    • 3
  • Alex Karge
    • 2
  • Sujith Seneviratne
    • 3
  • Arthur Nasis
    • 3
  • Eileen C. Ang
    • 1
  • Brian S. Ko
    • 3
  • Dee Nandurkar
    • 1
  • Eldho Paul
    • 4
  • Roland Hilling-Smith
    • 3
  • James Cameron
    • 3
  1. 1.Department of Diagnostic ImagingMonash Medical CentreMelbourneAustralia
  2. 2.Department of Biochemistry and Cell BiologyRice UniversityHoustonUSA
  3. 3.Monash Cardiovascular Research Centre, MonashHEARTMonash University Department of Medicine, Monash Medical CentreMelbourneAustralia
  4. 4.School of Public Health and Preventive MedicineMonash UniversityMelbourneAustralia

Personalised recommendations