Adenosine-stress dynamic myocardial perfusion imaging using 128-slice dual-source CT: optimization of the CT protocol to reduce the radiation dose

Original Paper


The aim of this study was to compare the radiation dose and image quality of different adenosine-stress dynamic myocardial perfusion CT protocols using a 128-slice dual-source computed tomography (DSCT) scanner. We included 330 consecutive patients with suspected coronary artery disease. Protocols employed the following dynamic scan parameters: protocol I, a 30-s scan with a fixed tube current (FTC, n = 172); protocol II, a 30-s scan using an automatic tube current modulation (ATCM) technique (n = 108); protocol III, a 14-s scan using an ATCM (n = 50). To determine the scan interval for protocol III, we analyzed time-attenuation curves of 26 patients with myocardial perfusion who had been scanned using protocol I or II. The maximum attenuation difference between normal and abnormal myocardium occurred at 18.0 s to 30.3 s after initiation of contrast injection. Myocardial perfusion images of FTC and ATCM were of diagnostic image quality based on visual analysis. The mean radiation dose associated with protocols I, II, and III was 12.1 ± 1.6 mSv, 7.7 ± 2.5 mSv, and 3.8 ± 1.3 mSv, respectively (p < 0.01). Use of a dose-modulation technique and a 14-s scan duration for adenosine-stress CT enables significant dose reduction while maintaining diagnostic image quality.


Myocardial perfusion imaging Dual-source computed tomography Image quality Radiation dose CT protocol 



Dual-source computed tomography


Fixed tube current


Automatic tube current modulation


Coronary artery disease


Multidetector computed tomography


Coronary CT angiography


Myocardial blood flow


Conflict of interest



  1. 1.
    Kurata A, Mochizuki T, Koyama Y et al (2005) Myocardial perfusion imaging using adenosine triphosphate stress multi-slice spiral computed tomography: alternative to stress myocardial perfusion scintigraphy. Circ J 69(5):550–557PubMedCrossRefGoogle Scholar
  2. 2.
    George RT, Silva C, Cordeiro MA et al (2006) Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol 48(1):153–160PubMedCrossRefGoogle Scholar
  3. 3.
    Rocha-Filho JA, Blankstein R, Shturman LD et al (2010) Incremental value of adenosine-indeced stress myocardial perfusion imaging with dual-source CT at cardiac CT angiography. Radiology 254(2):410–419PubMedCrossRefGoogle Scholar
  4. 4.
    Blankstein R, Shturman LD, Rogers IS et al (2009) Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol 54(12):1072–1084PubMedCrossRefGoogle Scholar
  5. 5.
    Bastarrika G, Ramos-Duran L, Rosenblum MA et al (2010) Adenosine-stress dynamic myocardial CT perfusion imaging: initial clinical experience. Invest Radiol 45(6):306–313PubMedGoogle Scholar
  6. 6.
    Bamberg F, Becker A, Schwarz F et al (2011) Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic CT-based myocardial perfusion imaging. Radiology 260(3):689–698PubMedCrossRefGoogle Scholar
  7. 7.
    Ho KT, Chua KC, Klotz E, Panknin C (2010) Stress and rest dynamic myocardial perfusion imaging by evaluation of complete time-attenuation curves with dual-source CT. JACC Cardiovasc Imaging 3(8):811–820PubMedCrossRefGoogle Scholar
  8. 8.
    Bruder H, Raupach R, Klotz E, Stierstorfer K, Flohr T (2009) Spatio-temporal filtration of dynamic CT data using diffusion filters. In: Samei E, Hsieh J (eds) Medical imaging 2009: physics of medical imaging, proceedings of the SPIE. Lake Buena Vista, FL, USA, pp 725810–725857Google Scholar
  9. 9.
    Einstein AJ, Moser KW, Thompson RC et al (2007) Radiation dose to patients from cardiac diagnostic imaging. Circulation 116(11):1290–1305PubMedCrossRefGoogle Scholar
  10. 10.
    Kalra MK, Maher MM, Toth TL et al (2004) Techniques and applications of automatic tube current modulation for CT. Radiology 233(3):649–657PubMedCrossRefGoogle Scholar
  11. 11.
    Rizzo S, Kalra M, Schmidt B et al (2006) Comparison of angular and combined automatic tube current modulation techniques with constant tube current CT of the abdomen and pelvis. AJR Am J Roentgenol 186(3):673–679PubMedCrossRefGoogle Scholar
  12. 12.
    Graser A, Wintersperger BJ, Suess C et al (2006) Dose reduction and image quality in MDCT colonography using tube current modulation. AJR Am J Roentgenol 187(3):695–701PubMedCrossRefGoogle Scholar
  13. 13.
    Smith AB, Dillon WP, Lau BC et al (2008) Radiation dose reduction strategy for CT protocols: successful implementation in neuroradiology section. Radiology 247(2):499–506PubMedCrossRefGoogle Scholar
  14. 14.
    Kalra MK, Rizzo S, Maher MM et al (2005) Chest CT performed with z-axis modulation: scanning protocol and radiation dose. Radiology 237(1):303–308PubMedCrossRefGoogle Scholar
  15. 15.
    Goo HW, Suh DS (2006) Tube current reduction in pediatric non-ECG-gated heart CT by combined tube current modulation. Pediatr Radiol 36(8):344–351PubMedCrossRefGoogle Scholar
  16. 16.
    Herzog C, Mulvihill DM, Nquyen SA et al (2008) Pediatric cardiovascular CT angiography: radiation dose reduction using automatic anatomic tube current modulation. AJR Am J Roentgenol 190(5):1232–1240PubMedCrossRefGoogle Scholar
  17. 17.
    Nakauchi Y, Iwanaga Y, Ikuta S et al (2012) Quantitative myocardial perfusion analysis using multi-row detector CT in acute myocardial infarction. Heart 98(7):566–572PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Radiology and Cardiovascular Imaging Center, Cardiac and Vascular Center, Samsung Medical CenterSungkyunkwan University School of MedicineGangnam-gu, SeoulKorea
  2. 2.Department of RadiologyHallym University Kangnam Sacred Heart HospitalSeoulKorea

Personalised recommendations