In-stent area stenosis on 64-slice multi-detector computed tomography coronary angiography: optimal cutoff value for minimum lumen cross-sectional area of coronary stents compared with intravascular ultrasound

  • Woocheol Kwon
  • Jiyoun Choi
  • Jang-Young Kim
  • Seong-Yoon Kim
  • Junghan Yoon
  • Kyoung-Hoon Choe
  • Seung Hwan Lee
  • Sung Gyun Ahn


We aimed to prospectively assess the optimal cutoff value for a minimum lumen cross-sectional area (CSA) on a 64-slice multidetector computed tomography (MDCT) compared with an intravascular ultrasound (IVUS). In 39 patients with 43 stents, the minimum lumen diameter, stent diameter, diameter stenosis, minimum lumen CSA, stent CSA, and area stenosis at the narrowest point were measured independently on 64-slice MDCT and IVUS images. For the assessment of diameter and CSA, 64-slice MDCT showed good correlations with IVUS (r = 0.82 for minimum lumen diameter, r = 0.66 for stent diameter, r = 0.79 for minimum lumen CSA, and r = 0.75 for stent CSA, respectively, P < 0.0001). For the assessment of diameter and area stenoses, a 64-slice MDCT showed good correlations with IVUS (r = 0.89 and 0.91, respectively, P < 0.0001). The overall sensitivity, specificity, positive predictive value, and negative predictive value to detect in-stent area restenosis (≥50 % area stenosis) of a 64-slice MDCT were 77, 100, 100, and 91 %, respectively. The cutoff value of a 64-slice MDCT, determined by receiver operator characteristic (ROC) analysis, was 5.0 mm2 with 76.5 % sensitivity and 92.3 % specificity for significant in-stent area restenosis; the area under the ROC curve was 0.902 (P < 0.0001). A good correlation was found between a 64-slice MDCT and the IVUS, regarding the assessment of diameter and area stenoses of coronary stents in selected patients implanted with stents of more than 3 mm in diameter. Optimal cutoff value for the minimum lumen CSA of coronary stents on the 64-slice MDCT is 5 mm2 to predict a CSA of 4 mm2 on IVUS.


In-stent restenosis Intravascular ultrasound Multidetector computed tomography 



This work was supported by a research grant from Novartis Korea (2009-8-0075).

Conflict of interest

There are no conflicts of interest regarding this manuscript.


  1. 1.
    Pache J, Dibra A, Mehilli J et al (2005) Drug-eluting stents compared with thin-strut bare stents for the reduction of restenosis: a prospective, randomized trial. Eur Heart J 26(13):1262–1268PubMedCrossRefGoogle Scholar
  2. 2.
    Sonoda S, Morino Y, Ako J et al (2004) Impact of final stent dimensions on long-term results following sirolimus-eluting stent implantation: serial intravascular ultrasound analysis from the sirius trial. J Am Coll Cardiol 43(11):1959–1963PubMedCrossRefGoogle Scholar
  3. 3.
    Abizaid AS, Mintz GS, Mehran R et al (1999) Long-term follow-up after percutaneous transluminal coronary angioplasty was not performed based on intravascular ultrasound findings: importance of lumen dimensions. Circulation 100(3):256–261PubMedCrossRefGoogle Scholar
  4. 4.
    Kitagawa T, Fujii T, Tomohiro Y et al (2006) Noninvasive assessment of coronary stents in patients by 16-slice computed tomography. Int J Cardiol 109(2):188–194PubMedCrossRefGoogle Scholar
  5. 5.
    Kefer JM, Coche E, Vanoverschelde JL et al (2007) Diagnostic accuracy of 16-slice multidetector-row CT for detection of in-stent restenosis vs detection of stenosis in nonstented coronary arteries. Eur Radiol 17(1):87–96PubMedCrossRefGoogle Scholar
  6. 6.
    Das KM, El-Menyar AA, Salam AM et al (2007) Contrast-enhanced 64-section coronary multidetector CT angiography versus conventional coronary angiography for stent assessment. Radiology 245(2):424–432PubMedCrossRefGoogle Scholar
  7. 7.
    Cademartiri F, Schuijf JD, Pugliese F et al (2007) Usefulness of 64-slice multislice computed tomography coronary angiography to assess in-stent restenosis. J Am Coll Cardiol 49(22):2204–2210PubMedCrossRefGoogle Scholar
  8. 8.
    Wykrzykowska JJ, Arbab-Zadeh A, Godoy G et al (2010) Assessment of in-stent restenosis using 64-MDCT: analysis of the CORE-64 Multicenter International Trial. AJR Am J Roentgenol 194(1):85–92PubMedCrossRefGoogle Scholar
  9. 9.
    Hamon M, Champ-Rigot L, Morello R et al (2008) Diagnostic accuracy of in-stent coronary restenosis detection with multislice spiral computed tomography: a meta-analysis. Eur Radiol 18(2):217–225PubMedCrossRefGoogle Scholar
  10. 10.
    Carrabba N, Schuijf JD, de Graaf FR et al (2010) Diagnostic accuracy of 64-slice computed tomography coronary angiography for the detection of in-stent restenosis: a meta-analysis. J Nucl Cardiol 17(3):470–478PubMedCrossRefGoogle Scholar
  11. 11.
    Fujii K, Mintz GS, Kobayashi Y et al (2004) Contribution of stent underexpansion to recurrence after sirolimus-eluting stent implantation for in-stent restenosis. Circulation 109(9):1085–1088PubMedCrossRefGoogle Scholar
  12. 12.
    Van Mieghem CA, Cademartiri F, Mollet NR et al (2006) Multislice spiral computed tomography for the evaluation of stent patency after left main coronary artery stenting: a comparison with conventional coronary angiography and intravascular ultrasound. Circulation 114(7):645–653PubMedCrossRefGoogle Scholar
  13. 13.
    Andreini D, Pontone G, Bartorelli AL et al (2009) Comparison of feasibility and diagnostic accuracy of 64-slice multidetector computed tomographic coronary angiography versus invasive coronary angiography versus intravascular ultrasound for evaluation of in-stent restenosis. Am J Cardiol 103(10):1349–1358PubMedCrossRefGoogle Scholar
  14. 14.
    Mintz GS, Nissen SE, Anderson WD et al (2001) American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 37(5):1478–1492PubMedCrossRefGoogle Scholar
  15. 15.
    Dragu R, Kerner A, Gruberg L et al (2008) Angiographically uncertain left main coronary artery narrowings: correlation with multidetector computed tomography and intravascular ultrasound. Int J Cardiovasc Imaging 24(5):557–563PubMedCrossRefGoogle Scholar
  16. 16.
    Caussin C, Daoud B, Ghostine S et al (2005) Comparison of lumens of intermediate coronary stenosis using 16-slice computed tomography versus intravascular ultrasound. Am J Cardiol 96(4):524–528PubMedCrossRefGoogle Scholar
  17. 17.
    Voros S, Rinehart S, Qian Z et al (2011) Prospective validation of standardized, 3-dimensional, quantitative coronary computed tomographic plaque measurements using radiofrequency backscatter intravascular ultrasound as reference standard in intermediate coronary arterial lesions: results from the ATLANTA (assessment of tissue characteristics, lesion morphology, and hemodynamics by angiography with fractional flow reserve, intravascular ultrasound and virtual histology, and noninvasive computed tomography in atherosclerotic plaques) I study. JACC Cardiovasc Interv 4(2):198–208PubMedCrossRefGoogle Scholar
  18. 18.
    Waller BF, Pinkerton CA, Slack JD (1992) Intravascular ultrasound: a histological study of vessels during life. The new ‘gold standard’ for vascular imaging. Circulation 85(6):2305–2310PubMedCrossRefGoogle Scholar
  19. 19.
    Smith SC Jr, Feldman TE, Hirshfeld JW Jr et al (2006) ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention-Summary Article: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention). J Am Coll Cardiol 47(1):216–235PubMedCrossRefGoogle Scholar
  20. 20.
    Jasti V, Ivan E, Yalamanchili V et al (2004) Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation 110(18):2831–2836PubMedCrossRefGoogle Scholar
  21. 21.
    Schroeder S, Flohr T, Kopp AF et al (2001) Accuracy of density measurements within plaques located in artificial coronary arteries by X-ray multislice CT: results of a phantom study. J Comput Assist Tomogr 25(6):900–906PubMedCrossRefGoogle Scholar
  22. 22.
    Cademartiri F, Mollet NR, Runza G et al (2005) Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol 15(7):1426–1431PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2012

Authors and Affiliations

  • Woocheol Kwon
    • 1
  • Jiyoun Choi
    • 1
  • Jang-Young Kim
    • 2
  • Seong-Yoon Kim
    • 2
  • Junghan Yoon
    • 2
  • Kyoung-Hoon Choe
    • 2
  • Seung Hwan Lee
    • 2
  • Sung Gyun Ahn
    • 2
  1. 1.Department of RadiologyYonsei University Wonju College of Medicine, Wonju Christian HospitalWonjuRepublic of Korea
  2. 2.Division of Cardiology, Department of Internal MedicineYonsei University Wonju College of Medicine, Wonju Christian HospitalWonjuRepublic of Korea

Personalised recommendations