Skip to main content
Log in

Left ventricular torsion and longitudinal shortening: two fundamental components of myocardial mechanics assessed by tagged cine-MRI in normal subjects

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Cardiac magnetic resonance imaging (Cardiac MRI) has become a gold standard diagnostic technique for the assessment of cardiac mechanics, allowing the non-invasive calculation of left ventricular long axis longitudinal shortening (LVLS) and absolute myocardial torsion (AMT) between basal and apical left ventricular slices, a movement directly related to the helicoidal anatomic disposition of the myocardial fibers. The aim of this study is to determine AMT and LVLS behaviour and normal values from a group of healthy subjects. A group of 21 healthy volunteers (15 males) (age: 23–55 y.o., mean: 30.7 ± 7.5) were prospectively included in an observational study by Cardiac MRI. Left ventricular rotation (degrees) was calculated by custom-made software (Harmonic Phase Flow) in consecutive LV short axis planes tagged cine-MRI sequences. AMT was determined from the difference between basal and apical planes LV rotations. LVLS (%) was determined from the LV longitudinal and horizontal axis cine-MRI images. All the 21 cases studied were interpretable, although in three cases the value of the LV apical rotation could not be determined. The mean rotation of the basal and apical planes at end-systole were −3.71° ± 0.84° and 6.73° ± 1.69° (n:18) respectively, resulting in a LV mean AMT of 10.48° ± 1.63° (n:18). End-systolic mean LVLS was 19.07 ± 2.71%. Cardiac MRI allows for the calculation of AMT and LVLS, fundamental functional components of the ventricular twist mechanics conditioned, in turn, by the anatomical helical layout of the myocardial fibers. These values provide complementary information about systolic ventricular function in relation to the traditional parameters used in daily practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Torrent Guasp F (1966) Sobre morfología y funcionalismo cardiacos (partes I, II y III). Rev Esp Cardiol 19: 48–55, 56–71, 72–82

  2. Torrent Guasp F (1980) La estructuración macroscópica del miocardio ventricular. Rev Esp Cardiol 33:265–287

    PubMed  CAS  Google Scholar 

  3. Internet web page: http://www.torrent-guasp.com/PAGES/Publications.htm

  4. Lorenz C, Pastorek J, Bundy J (2000) Delineation of normal human left ventricular twist troughout systole by tagged cine magnetic resonance imaging. J Cardiovasc Magn Reson 2:97–108

    Article  PubMed  CAS  Google Scholar 

  5. Sengupta PP, Krishnamoorthy VK, Korinek J, Narula J, Vannan MA, Lester SJ et al (2007) Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J Am Soc Echocardiogr 20:539–551

    Article  PubMed  Google Scholar 

  6. Moon MR, Ingels NB Jr, Daughters GT, Stinson EB, Hansen DE, Miller DC (1994) Alterations in left ventricular twist mechanics with inotropic stimulation and volume loading in human subjects. Circulation 89:142–150

    PubMed  CAS  Google Scholar 

  7. Torrent-Guasp F, Ballester M, Buckberg GD, Carreras F, Flotats A, Carrió I et al (2001) Spatial orientation of the ventricular muscle band: physiologic contribution and surgical implications. J Thorac Cardiovasc Surg 122:389–392

    Article  PubMed  CAS  Google Scholar 

  8. Masood S, Yang GZ, Pennell DJ, Firmin DN (2000) Investigating intrinsic myocardial mechanics: the role of MR tagging, velocity phase mapping, and diffusion imaging. J Magn Reson Imaging 12:873–883

    Article  PubMed  CAS  Google Scholar 

  9. Buchalter MB, Weiss JL, Rogers WJ, Zerhouni EA, Weisfeldt ML, Beyar R et al (1990) Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging. Circulation 81:1236–1244

    Article  PubMed  CAS  Google Scholar 

  10. Garcia-Barnes J, Gil D, Barajas J, Carreras F, Pujadas S, Radeva P (2006) Characterization of ventricular torsion in healthy subjects using gabor filters and a variational framework. Comput Cardiol 33:887–890

    Google Scholar 

  11. Garcia-Barnes J, Gil D, Pujadas S, Carreras F (2008) A variational framework for assessment of the left ventricle motion. Math Model Nat Phenom 3:76–100

    Article  Google Scholar 

  12. Castillo E, Osman NF, Rosen BD, El-Shehaby I, Pan L, Jerosch-Herold M et al (2005) Quantitative assessment of regional myocardial function with MR-tagging in a multi-center study: interobserver and intraobserver agreement of fast strain analysis with Harmonic Phase (HARP) MRI. J Cardiovasc Magn Reson 7:783–791

    Article  PubMed  Google Scholar 

  13. Osman NF, McVeigh ER, Prince JL (2000) Imaging heart motion using harmonic phase MRI. IEEE Trans Med Imaging 19:186–202

    Article  PubMed  CAS  Google Scholar 

  14. Montillo A, Metaxas D, Axel L (2004) Extracting tissue deformation using Gabor filter banks. Proc SPIE 5369:1–9

    Article  Google Scholar 

  15. Evans LC (1993) Partial differential equations. Berkeley Math Lect Notes

  16. Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New York

    Google Scholar 

  17. Sengupta PP, Tajik JA, Chandrasekaran K, Khanderia BK (2008) Twist mechanics of the left ventricle: principles and application. J Am Coll Cardiol Img 1:366–376

    Google Scholar 

  18. Vannan MA, Pedrizzetti G, Li P, Gurudevan S, Houle H, Main J et al (2005) Effect of cardiac resinchronization thereapy on longitudinal and circumferential left ventricular mechanics by velocity vector imaging: description and initial clinical application of a novel method using high-frame rate B-mode echocardiographic images. Echocardiography 22:826–830

    Article  PubMed  Google Scholar 

  19. Jones CJ, Raposo L, Gibson DG (1990) Functional importance of the long axis dynamics of the human left ventricle. Br Heart J 63:215–220

    Article  PubMed  CAS  Google Scholar 

  20. Ha JW, Lee HC, Kang ES, Ahn CM, Kim JM, Ahn JA et al (2007) Abnormal left ventricular longitudinal functional reserve in patients with diabetes mellitus: implication for detecting subclinical myocardial dysfunction using exercise tissue Doppler echocardiography. Heart 93:1571–1576

    Article  PubMed  Google Scholar 

  21. Wang J, Khouri DS, Yue Y, Torre-Amione G, Nagueh SF (2008) Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. Eur Heart J 29:1283–1289

    Article  PubMed  CAS  Google Scholar 

  22. Waks E, Prince J, Andrew S (1996) Cardiac motion simulator for tagged MRI. In Proceedings of mathematical methods in biomedical image analysis IEEE, pp 182–191

  23. Liu Y et al (2009) Reconstruction of myocardial tissue motion and strain fields from displacement encoded MR imaging. Am J Physiol Heart Circ Physiol 297(3):H1151–H1162

    Article  PubMed  CAS  Google Scholar 

  24. Buckberg G, Hoffman JIE, Mahajan A, Saleh S, Coghlan C (2008) Cardiac mechanics revisited. Circulation 118:2571–2587

    Article  PubMed  Google Scholar 

  25. Wang J, Khoury DS, Yue Y, Torre-Amione G, Nagueh SF (2008) Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. Eur Heart J 29:1283–1289

    Article  PubMed  CAS  Google Scholar 

  26. Torrent-Guasp F (1998) Estructura y función del corazón. Rev Esp Cardiol 51:91–102

    PubMed  CAS  Google Scholar 

  27. Ballester M, Ferreira A, Carreras F (2008) The myocardial band. Heart Fail Clin 4:261–272

    Article  PubMed  Google Scholar 

  28. Rademakers FE, Rogers WJ, Guier WH, Hutchins GM, Siu CO, Weisfeldt MD et al (1994) Relation of regional cross-fiber shortening to wall thickening in the intact heart. Three-dimensional strain analysis by NMR tagging. Circulation 89:1174–1182

    PubMed  CAS  Google Scholar 

  29. Helm PA, Tseng HJ, Younes L, McVeigh ER, Winslow RL (2005) Ex Vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magn Res Med 54:850–859

    Article  Google Scholar 

  30. Streeter DDJ, Spotnitz HM, Patel DP, Ross JJ, Sonnenblick EH (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24:339–347

    PubMed  Google Scholar 

  31. Harrington KB, Rodriguez F, Cheng A, Langer F, Ashikaga H, Daughters GT et al (2005) Direct measurement of transmural laminar architecture in the anterolateral wall of the ovine left ventricle: new implications for the wall thickening mechanics. Am J Physiol Heart Circ Physiol 288:H1324–H1330

    Article  PubMed  CAS  Google Scholar 

  32. Carreras F, Ballester M, Pujadas S, Leta R, Pons-Llado G (2006) Morphological and functional evidences of the helical heart from non-invasive cardiac imaging. Eur J Cardiothorac Surg 29:50–55

    Article  Google Scholar 

  33. Anderson RH, Smerup M, Sanchez-Quintana D, Loukas M, Lunkenheimer PP (2009) The three-dimensional arrangement of the myocites in the ventricular walls. Clin Anat 22:64–76

    Article  PubMed  Google Scholar 

  34. Nasiraei-Moghaddam A, Gharib M (2009) Evidence for the existence of a functional helical myocardial band. Am J Physiol Heart Circ Physiol 296:H127–H131

    Article  PubMed  CAS  Google Scholar 

  35. Buckberg GD, Coghlan HC, Hoffman JI, Torrent-Guasp F (2001) The structure and function of the helical heart and its buttress wrapping. VII. Critical importance of septum for right ventricular function. Semin Thorac Cardiovasc Surg 13:402–416

    PubMed  CAS  Google Scholar 

  36. Torrent-Guasp F, Kocica MJ, Corno A, Komeda M, Cox J, Flotats A et al (2004) Systolic ventricular filling. Eur J Cardiothorac Surg 25:376–386

    Article  PubMed  Google Scholar 

  37. Sengupta PP, Khanderia BK, Narula J (2008) Twist and untwist mechanics of the left ventricle. Heart Failure Clin 4:315–324

    Article  Google Scholar 

  38. Bertini M, Sengupta PP, Nucifora G, Delgado V, Ng ACT, Marsan NA, Shanks M et al (2009) Role of left ventricular twist mechanics in the assessment of cardiac dyssynchrony in heart failure. J Am Coll Cardiol Img 2:1425–1435

    Google Scholar 

  39. Helle-Valle T, Crosby J, Edvardsen T, Lyseggen E, Amundsen BH, Smith HJ et al (2005) New noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. Circulation 112:3149–3156

    Article  PubMed  Google Scholar 

  40. Delgado V, Ypenburg C, van Bommel RJ, Tops LF, Mollema SA, Marsan NA et al (2008) Strain in cardiac resynchronization therapy imaging: comparison between longitudinal, circumferential, and radial assessment of left ventricular dyssynchrony by speckle tracking strain. J Am Coll Cardiol 51:1944–1952

    Article  PubMed  Google Scholar 

  41. Zócalo Y, Guevara E, Bla D, Giacche E, Pessana F, Peidro R, Armentano RL (2008) A reduction in the magnitude and velocity of left ventricular torsion may be associated with increased left ventricular efficiency: evaluation by speckle-tracking echocardiography. Rev Esp Cardiol 61:705–713

    Article  PubMed  Google Scholar 

  42. Hui L, Pemberton J, Hickey E, Kui Li X, Lysyansky P, Ashraf M et al (2007) The contribution of left ventricular muscle bands to left ventricular rotation: assessment by a 2-dimensional speckle tracking method. J Am Soc Echocardiogr 20:486–491

    Article  PubMed  Google Scholar 

  43. Takeuchi M, Nakai H, Kokumai M, Nishikage T, Otani S, Lang RM (2006) Age-related changes in left ventricular twist assessed by two-dimensional speckle-tracking imaging. J Am Soc Echocardiogr 19:1077–1084

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Elena Ferré, Ana Belén Cabanillas and David Bordalas, radiology technicians at Clínica Creu Blanca, for their assistance in performing cardiac MRI studies. We also thank Dr Ignasi Gich for his contribution to the statistical data analysis. This study was funded by the Instituto de Salud Carlos III, with the research projects of the Fondo de Investigación Sanitaria (FIS) numbers 04/2663, 07/0454, 07/1188 and by the Spanish government projects TIN2009-13618, CONSOLIDERINGENIO 2010 (CSD2007-00018). The third author has been supported by The Ramon y Cajal Program.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Carreras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carreras, F., Garcia-Barnes, J., Gil, D. et al. Left ventricular torsion and longitudinal shortening: two fundamental components of myocardial mechanics assessed by tagged cine-MRI in normal subjects. Int J Cardiovasc Imaging 28, 273–284 (2012). https://doi.org/10.1007/s10554-011-9813-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-011-9813-6

Keywords

Navigation