Advertisement

Coronary CT angiography with low radiation dose

  • Lei Xu
  • Zhaoqi Zhang
Review

Abstract

With the introduction of 64-slice CT and dual-source CT technology, coronary CT angiography (CCTA) has emerged as a useful diagnostic imaging modality for the noninvasive assessment of coronary heart disease. Recently, the risks associated with ionizing radiation on CT have raised serious concerns. The main concern of exposure to ionizing radiation is the potential risk of cancer. CCTA involves much higher radiation dose with the advances in the spatial and temporal resolution of cardiac CT. Currently, various dose-saving algorithms, such as ECG (electrocardiography)-based dose modulation, reduced tube voltage, and prospective ECG gating, high-pitch helical scanning are available to lower radiation exposure during cardiac CT. Therefore, careful selection of CT scanning protocols is needed to keep the radiation exposure ‘as low as reasonably achievable (ALARA)’. In this review we will discuss the radiation dose safety issues, the measurement of radiation dose and current use of dose-saving techniques in CCTA.

Keywords

Coronary CT angiography Dose reduction Prospective gating Radiation dose 

References

  1. 1.
    Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multi-slice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113(10):1305–1310CrossRefPubMedGoogle Scholar
  2. 2.
    Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R et al (2007) Diagnostic performance of multi-detector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology 244(2):419–428CrossRefPubMedGoogle Scholar
  3. 3.
    Leber AW, Knez A, von Ziegler F et al (2005) Quantification of obstructive and non-obstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46(1):147–154CrossRefPubMedGoogle Scholar
  4. 4.
    Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16(12):2739–2747CrossRefPubMedGoogle Scholar
  5. 5.
    Hur G, Hong SW, Kim SY et al (2007) Uniform image quality achieved by tube current modulation using SD of attenuation in coronary CT angiography. AJR Am J Roentgenol 189(1):188–196CrossRefPubMedGoogle Scholar
  6. 6.
    Wilde P, Pitcher EM, Slack K (2001) Radiation hazards for the patient in cardiological procedures. Heart 85(2):127–130CrossRefPubMedGoogle Scholar
  7. 7.
    Neofotistou V, Vano E, Padovani R et al (2003) Preliminary reference levels in interventional cardiology. Eur Radiol 13(10):2259–2263CrossRefPubMedGoogle Scholar
  8. 8.
    Coles DR, Smail MA, Negus IS et al (2006) Comparison of radiation doses from multi-slice computed tomography coronary angiography and conventional diagnostic angiography. J Am Coll Cardiol 47(9):1840–1845CrossRefPubMedGoogle Scholar
  9. 9.
    Pflederer T, Rudofsky L, Ropers D et al (2009) Image quality in a low radiation exposure protocol for retrospectively ECG-gated coronary CT angiography. AJR Am J Roentgenol 192(4):1045–1050CrossRefPubMedGoogle Scholar
  10. 10.
    Committee to assess health risks from exposure to low levels of ionizing radiation, National Research Council (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. National Academies, WashingtonGoogle Scholar
  11. 11.
    Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284CrossRefPubMedGoogle Scholar
  12. 12.
    Lee CI, Haims AH, Monico EP et al (2004) Diagnostic CT scans: assessment of patient, physician, and radiologist awareness of radiation dose and possible risks. Radiology 231(2):393–398CrossRefPubMedGoogle Scholar
  13. 13.
    Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301(5):500–507CrossRefPubMedGoogle Scholar
  14. 14.
    Alkadhi H, Stolzmann P, Scheffel H et al (2008) Radiation dose of cardiac dual-source CT: the effect of tailoring the protocol to patient-specific parameters. Eur J Radiol 68(3):385–391CrossRefPubMedGoogle Scholar
  15. 15.
    Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298(3):317–323CrossRefPubMedGoogle Scholar
  16. 16.
    Kalra MK, Maher MM, Toth TL et al (2004) Strategies for CT radiation dose optimization. Radiology 230(3):619–628CrossRefPubMedGoogle Scholar
  17. 17.
    Mitka M (2006) CT angiography: clearer picture, Fuzzier reception. JAMA 295(17):1989–1990CrossRefPubMedGoogle Scholar
  18. 18.
    Kubo T, Lin PJ, Stiller W et al (2008) Radiation dose reduction in chest CT: a review. AJR Am J Roentgenol 190(2):335–343CrossRefPubMedGoogle Scholar
  19. 19.
    Fujii K, Aoyama T, Koyama S et al (2007) Comparative evaluation of organ and effective doses for paediatric patients with those for adults in chest and abdominal CT examinations. Br J Radiol 80(956):657–667CrossRefPubMedGoogle Scholar
  20. 20.
    Einstein AJ, Moser KW, Thompson RC et al (2007) Radiation dose to patients from cardiac diagnostic imaging. Circulation 116(11):1290–1305CrossRefPubMedGoogle Scholar
  21. 21.
    Menzel H, Schibilla H, Teunen D (2000) European guidelines on quality criteria for computed tomography. Publication no. EUR16262 EN. European Commission, Luxembourg. Available at: http://www.drs.dk/guidelines/ct/quality/index.htm
  22. 22.
    Abada HT, Larchez C, Daoud B et al (2006) MDCT of the coronary arteries: feasibility of low-dose CT with ECG-pulsed tube current modulation to reduce radiation dose. AJR Am J Roentgenol 186(6 Suppl 2):S387–S390CrossRefPubMedGoogle Scholar
  23. 23.
    Poll LW, Cohnen M, Brachten S et al (2002) Dose reduction in multi-slice CT of the heart by use of ECG-controlled tube current modulation (“ECG pulsing”): phantom measurements. Rofo 174(12):1500–1505PubMedGoogle Scholar
  24. 24.
    Kalra MK, Maher MM, Toth TL et al (2004) Techniques and applications of automatic tube current modulation for CT. Radiology 233(3):649–657CrossRefPubMedGoogle Scholar
  25. 25.
    Herzog C, Mulvihill DM, Nguyen SA et al (2008) Pediatric cardiovascular CT angiography: radiation dose reduction using automatic anatomic tube current modulation. AJR Am J Roentgenol 190(5):1232–1240CrossRefPubMedGoogle Scholar
  26. 26.
    Francone M, Di Castro E, Napoli A et al (2008) Dose reduction and image quality assessment in 64-detector row computed tomography of the coronary arteries using an automatic exposure control system. J Comput Assist Tomogr 32(5):668–678CrossRefPubMedGoogle Scholar
  27. 27.
    Hoang JK, Hurwitz LM, Boll DT et al (2009) Optimization of tube current in coronary multi-detector computed tomography angiography: assessment of a standardized method to individualize current selection based on body habitus. J Comput Assist Tomogr 33(4):498–504CrossRefPubMedGoogle Scholar
  28. 28.
    Sigal-Cinqualbre AB, Hennequin R, Abada HT et al (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231(1):169–174CrossRefPubMedGoogle Scholar
  29. 29.
    Prasad SR, Wittram C, Shepard JA et al (2002) Standard-dose and 50%-reduced-dose chest CT: comparing the effect on image quality. AJR Am J Roentgenol 179(2):461–465PubMedGoogle Scholar
  30. 30.
    Huda W, Scalzetti EM, Levin G (2000) Technique factors and image quality as functions of patient weight at abdominal CT. Radiology 217(2):430–435PubMedGoogle Scholar
  31. 31.
    Szucs-Farkas Z, Kurmann L, Strautz T et al (2008) Patient exposure and image quality of low-dose pulmonary computed tomography angiography: comparison of 100- and 80-kVp protocols. Invest Radiol 43(12):871–876CrossRefPubMedGoogle Scholar
  32. 32.
    Schoenhagen P (2008) Back to the future: coronary CT angiography using prospective ECG triggering. Eur Heart J 29(2):153–154CrossRefPubMedGoogle Scholar
  33. 33.
    Klass O, Jeltsch M, Feuerlein S et al (2009) Prospectively gated axial CT coronary angiography: preliminary experiences with a novel low-dose technique. Eur Radiol 19(4):829–836CrossRefPubMedGoogle Scholar
  34. 34.
    Husmann L, Valenta I, Gaemperli O et al (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29(2):191–197CrossRefPubMedGoogle Scholar
  35. 35.
    Shuman WP, Branch KR, May JM et al (2008) Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248(2):431–437CrossRefPubMedGoogle Scholar
  36. 36.
    Hirai N, Horiguchi J, Fujioka C et al (2008) Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 248(2):424–430CrossRefPubMedGoogle Scholar
  37. 37.
    Earls JP, Berman EL, Urban BA et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246(3):742–753CrossRefPubMedGoogle Scholar
  38. 38.
    Scheffel H, Alkadhi H, Leschka S et al (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94(9):1132–1137CrossRefPubMedGoogle Scholar
  39. 39.
    Xu L, Yang L, Zhang Z et al (2009) Low-dose adaptive sequential scan for dual-source CT coronary angiography in patients with high heart rate: comparison with retrospective ECG gating. Eur J Radiol doi: 10.1016/j.ejrad.2009.06.003
  40. 40.
    Choi SI, George RT, Schuleri KH et al (2009) Recent developments in wide-detector cardiac computed tomography. Int J Cardiovasc Imaging 25(Suppl 1):23–29CrossRefPubMedGoogle Scholar
  41. 41.
    Hara AK, Paden RG, Silva AC et al (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 193(3):764–771CrossRefPubMedGoogle Scholar
  42. 42.
    McCollough CH, Primak AN, Saba O et al (2007) Dose performance of a 64-channel dual-source CT scanner. Radiology 243(3):775–784CrossRefPubMedGoogle Scholar
  43. 43.
    Hermann F, Martinoff S, Meyer T et al (2008) Reduction of radiation dose estimates in cardiac 64-slice CT angiography in patients after coronary artery bypass graft surgery. Invest Radiol 43(4):253–260CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2010

Authors and Affiliations

  1. 1.Department of RadiologyBeijing Anzhen Hospital, Capital Medical UniversityBeijingChina

Personalised recommendations