Skip to main content

Advertisement

Log in

Spectroscopy to improve identification of vulnerable plaques in cardiovascular disease

  • Review
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Many apparent healthy persons die from cardiovascular disease, despite major advances in prevention and treatment of cardiovascular disease. Traditional cardiovascular risk factors are able to predict cardiovascular events in the long run, but fail to assess current disease activity or nearby cardiovascular events. There is a clear relation between the occurrence of cardiovascular events and the presence of so-called vulnerable plaques. These vulnerable plaques are characterized by active inflammation, a thin cap and a large lipid pool. Spectroscopy is an optical imaging technique which depicts the interaction between light and tissues, and thereby shows the biochemical composition of tissues. In recent years, impressive advances have been made in spectroscopy technology and intravascular spectroscopy is able to assess the composition of plaques of interest and thereby to identify and actually quantify plaque vulnerability. This review summarizes the current evidence for spectroscopy as a measure of plaque vulnerability and discusses the potential role of intravascular spectroscopic imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lindholm LH, Mendis S (2007) Prevention of cardiovascular disease in developing countries. Lancet 370(9589):720–722

    Article  PubMed  Google Scholar 

  2. Naghavi M, Libby P, Falk E et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 108(14):1664–1672

    Article  PubMed  Google Scholar 

  3. Manoharan G, Ntalianis A, Muller O et al (2009) Severity of coronary stenoses responsible for acute coronary syndromes. Am J Cardiol 103(9):1138–1188

    Article  Google Scholar 

  4. Fayad ZA, Fuster V (2001) Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ Res 89(4):305–316

    Article  CAS  PubMed  Google Scholar 

  5. Pearson TA (2002) New tools for coronary risk assessment: what are their advantages and limitations? Circulation 105(7):886–892

    Article  PubMed  Google Scholar 

  6. Hamdan A, Assali A, Fuchs S et al (2007) Imaging of vulnerable coronary artery plaques. Catheter Cardiovasc Interv 70(1):65–74

    Article  PubMed  Google Scholar 

  7. Chang R (1971) Basic principles of spectroscopy. McGraw-Hill, New York

    Google Scholar 

  8. Kolodgie FD, Burke AP, Farb A et al (2001) The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol 16(5):285–292

    Article  CAS  PubMed  Google Scholar 

  9. Shah PK (2007) Molecular mechanisms of plaque instability. Curr Opin Lipidol 18(5):492–499

    Article  CAS  PubMed  Google Scholar 

  10. Shah PK (2003) Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol 41(4 Suppl S):15S–22S

    Article  CAS  PubMed  Google Scholar 

  11. Johnson JL (2007) Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability. Expert Rev Cardiovasc Ther 5(2):265–282

    Article  CAS  PubMed  Google Scholar 

  12. Cipollone F, Fazia M, Mincione G et al (2004) Increased expression of transforming growth factor-beta1 as a stabilizing factor in human atherosclerotic plaques. Stroke 35(10):2253–2257

    Article  CAS  PubMed  Google Scholar 

  13. Fleiner M, Kummer M, Mirlacher M et al (2004) Arterial neovascularization and inflammation in vulnerable patients: early and late signs of symptomatic atherosclerosis. Circulation 110(18):2843–2850

    Article  PubMed  Google Scholar 

  14. Salenius JP, Brennan JF III, Miller A et al (1998) Biochemical composition of human peripheral arteries examined with near-infrared Raman spectroscopy. J Vasc Surg 27(4):710–719

    Article  CAS  PubMed  Google Scholar 

  15. van de Poll SW, Romer TJ, Puppels GJ et al (2002) Imaging of atherosclerosis. Raman spectroscopy of atherosclerosis. J Cardiovasc Risk 9(5):255–261

    Article  PubMed  Google Scholar 

  16. Romer TJ, Brennan JF III, Fitzmaurice M et al (1998) Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy. Circulation 97(9):878–885

    CAS  PubMed  Google Scholar 

  17. Romer TJ, Brennan JF III, Puppels GJ et al (2000) Intravascular ultrasound combined with Raman spectroscopy to localize and quantify cholesterol and calcium salts in atherosclerotic coronary arteries. Arterioscler Thromb Vasc Biol 20(2):478–483

    CAS  PubMed  Google Scholar 

  18. van de Poll SW, Romer TJ, Volger OL et al (2001) Raman spectroscopic evaluation of the effects of diet and lipid-lowering therapy on atherosclerotic plaque development in mice. Arterioscler Thromb Vasc Biol 21(10):1630–1635

    Article  Google Scholar 

  19. Scepanovic OR, Fitzmaurice M, Gardecki JA et al (2006) Detection of morphological markers of vulnerable atherosclerotic plaque using multimodal spectroscopy. J Biomed Opt 11(2):021007

    Article  PubMed  Google Scholar 

  20. Motz JT, Hunter M, Galindo LH et al (2004) Optical fiber probe for biomedical Raman spectroscopy. Appl Opt 43(3):542–554

    Article  PubMed  Google Scholar 

  21. Buschman HP, Marple ET, Wach ML et al (2000) In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy. Anal Chem 72(16):3771–3775

    Article  CAS  PubMed  Google Scholar 

  22. Motz JT, Fitzmaurice M, Miller A et al (2006) In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque. J Biomed Opt 11(2):021003

    Article  PubMed  Google Scholar 

  23. Virmani R, Kolodgie FD, Burke AP et al (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20(5):1262–1275

    CAS  PubMed  Google Scholar 

  24. Cassis LA, Lodder RA (1993) Near-IR imaging of atheromas in living arterial tissue. Anal Chem 65(9):1247–1256

    Article  CAS  PubMed  Google Scholar 

  25. Dempsey RJ, Cassis LA, Davis DG, Lodder RA (1997) Near-infrared imaging and spectroscopy in stroke research: lipoprotein distribution and disease. Ann N Y Acad Sci 820:149–169

    Article  CAS  PubMed  Google Scholar 

  26. Jaross W, Neumeister V, Lattke P, Schuh D (1999) Determination of cholesterol in atherosclerotic plaques using near infrared diffuse reflection spectroscopy. Atherosclerosis 147(2):327–337

    Article  CAS  PubMed  Google Scholar 

  27. Moreno PR, Lodder RA, Purushothaman KR et al (2002) Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 105(8):923–927

    Article  PubMed  Google Scholar 

  28. Lilledahl MB, Haugen OA, Barkost M, Svaasand LO (2006) Reflection spectroscopy of atherosclerotic plaque. J Biomed Opt 11(2):021005

    Article  PubMed  Google Scholar 

  29. Moreno PR, Muller JE (2003) Detection of high-risk atherosclerotic coronary plaques by intravascular spectroscopy. J Interv Cardiol 16(3):243–252

    Article  PubMed  Google Scholar 

  30. Moreno PR, Muller JE (2003) Detection of high-risk atherosclerotic coronary plaques by intravascular spectroscopy. J Interv Cardiol 16(3):243–252

    Article  PubMed  Google Scholar 

  31. Waxman S, Ishibashi F, Caplan JD (2007) Rationale and use of near-infrared spectroscopy for detection of lipid-rich and vulnerable plaques. J Nucl Cardiol 14(5):719–728

    Article  PubMed  Google Scholar 

  32. Hiro T, Leung CY, De Guzman S et al (1997) Are soft echoes really soft? Intravascular ultrasound assessment of mechanical properties in human atherosclerotic tissue. Am Heart J 133(1):1–7

    Article  CAS  PubMed  Google Scholar 

  33. Hatsukami TS, Ross R, Polissar NL, Yuan C (2000) Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation 102(9):959–964

    CAS  PubMed  Google Scholar 

  34. Chu B, Ferguson MS, Underhill H et al (2005) Images in cardiovascular medicine. Detection of carotid atherosclerotic plaque ulceration, calcification, and thrombosis by multicontrast weighted magnetic resonance imaging. Circulation 112(1):e3–e4

    Article  PubMed  Google Scholar 

  35. Finn AV, Joner M, Nakazawa G et al (2007) Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation 115(18):2435–2441

    Article  PubMed  Google Scholar 

  36. Joner M, Finn AV, Farb A et al (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 48(1):193–202

    Article  PubMed  Google Scholar 

  37. Hong MK, Mintz GS, Lee CW et al (2008) A three-vessel virtual histology intravascular ultrasound analysis of frequency and distribution of thin-cap fibroatheromas in patients with acute coronary syndrome or stable angina pectoris. Am J Cardiol 101(5):568–572

    Article  PubMed  Google Scholar 

  38. Hong MK, Mintz GS, Lee CW et al (2007) Comparison of virtual histology to intravascular ultrasound of culprit coronary lesions in acute coronary syndrome and target coronary lesions in stable angina pectoris. Am J Cardiol 100(6):953–959

    Article  PubMed  Google Scholar 

  39. Cutlip DE, Chhabra AG, Baim DS et al (2004) Beyond restenosis: five-year clinical outcomes from second-generation coronary stent trials. Circulation 110(10):1226–1230

    Article  PubMed  Google Scholar 

  40. Luker GD, Luker KE (2008) Optical imaging: current applications and future directions. J Nucl Med 49(1):1–4

    Article  PubMed  Google Scholar 

  41. Chen J, Tung CH, Mahmood U et al (2002) In vivo imaging of proteolytic activity in atherosclerosis. Circulation 105(23):2766–2771

    Article  PubMed  Google Scholar 

  42. Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378

    Article  CAS  PubMed  Google Scholar 

  43. Uchida Y, Nakamura F, Tomaru T, Morita T, Oshima T, Sasaki T, Morizuki S, Hirose J (1995) Prediction of acute coronary syndromes by percutaneous coronary angioscopy in patients with stable angina. Am Heart J 130(2):195–203

    Article  CAS  PubMed  Google Scholar 

  44. Manfrini O, Mont E, Leone O et al (2006) Sources of error and interpretation of plaque morphology by optical coherence tomography. Am J Cardiol 98(2):156–159

    Article  PubMed  Google Scholar 

  45. Stefanadis C, Toutouzas K, Tsiamis E et al (2001) Thermography of human arterial system by means of new thermography catheters. Catheter Cardiovasc Interv 54(1):51–58

    Article  CAS  PubMed  Google Scholar 

  46. Rudd JH, Davies JR, Weissberg PL (2005) Imaging of atherosclerosis—can we predict plaque rupture? Trends Cardiovasc Med 15(1):17–24

    Article  PubMed  Google Scholar 

  47. Cordeiro MA, Lima JA (2006) Atherosclerotic plaque characterization by multidetector row computed tomography angiography. J Am Coll Cardiol 47(8 Suppl):C40–C47

    Article  PubMed  Google Scholar 

  48. Ogawa M, Ishino S, Mukai T et al (2004) (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 45(7):1245–1250

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Dr. Andries J. Smit is one of the founders of DiagnOptics B.V., Groningen, the Netherlands, manufacturer of the AGE-Reader, which is a skin autofluorescence method not mentioned in the present article. There are no potential or actual, personal, political, or financial interests by any of the other authors in the material, information, or techniques described in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark J. Zeebregts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruggink, J.L.M., Meerwaldt, R., van Dam, G.M. et al. Spectroscopy to improve identification of vulnerable plaques in cardiovascular disease. Int J Cardiovasc Imaging 26, 111–119 (2010). https://doi.org/10.1007/s10554-009-9500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-009-9500-z

Keywords

Navigation