Skip to main content
Log in

Aortic valves stenosis and regurgitation: assessment with dual source computed tomography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To prospectively evaluate diagnostic accuracy of dual source computed tomography (DSCT) for evaluation of aortic stenosis (AS) and aortic regurgitation (AR) with transthoracic echocardiography (TTE) as reference. We evaluated a total of 79 patients who underwent both DSCT and TTE, 40 with aortic valve disease as assessed by TTE, and 39 matched controls. Maximum aortic valve area (AVA) in systole was planimetrically measured with DSCT, and measurements were compared with TTE, as well as maximum regurgitant orifice area (ROA) in diastole. Dimensions of the aortic root and left ventricular parameters were compared. DSCT correctly identified 30 patients with AS [sensitivity 91%, specificity 100%, positive predictive value (PPV) 100%, and negative predictive value (NPV) 94%], and 32 patients with AR (sensitivity 94%, specificity 98%, PPV 97%, and NPV 96%). A significant correlation was observed between CT planimetric size of aortic valves area and TTE (r = 0.79; P < 0.01). Bland-Altman plot demonstrates a good intermodality agreement between DSCT and TTE with a slight overestimation of AVA by DSCT (+0.14 cm2). A significant correlation was observed between CT planimetric size of ROA (0.49 cm2 ± 0.40) and TTE classification of mild, moderate and severe AR (r = 0.79; P < 0.01). With receiver operating characterisitic curve analysis, discrimination between degrees of AR with DSCT was not very accurate within cutoff ROAs. A significant correlation was observed between methods in dimensions of aortic annulus (r = 0.87, P < 0.01), sinus of Valsalva (r = 0.91, P < 0.01), and ascending aorta (r = 0.92, P < 0.01), and in end-systolic volume (r = 0.82, P< 0.01), end-diastolic volume (r = 0.87, P < 0.01) and ejection fraction (r = 0.86, P < 0.01). DSCT can provide a simultaneous and accurate evaluation of the AVA, left ventricular ejection fraction and aortic root dimensions in patients with AS or AR, but measurement of ROA is not very accurate to differentiate severity of AR. DSCT can achieve an exhaustive and comprehensive preoperative assessment of patients with AS and AR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DSCT:

Dual source computed tomography

AS:

Aortic stenosis

AR:

Aortic regurgitation

TTE:

Transthoracic echocardiography

AVA:

Aortic valve area

ROA:

Regurgitant orifice area

PPV:

Positive predictive value

NPV:

Negative predictive value

LVOT:

Left ventricular outflow tract

LVEF:

Left ventricular ejection fraction

References

  1. Bonow R, Carabello B (1998) Guidelines for the management of patients with valvular heart disease. ACC/AHA guidelines. Circulation 98:1949–1984

    PubMed  CAS  Google Scholar 

  2. Skjaerpe T, Hegrenaes L, Hatle L (1985) Noninvasive estimation of valve area in patients with aortic stenosis by Doppler ultrasound and two-dimensional echocardiography. Circulation 72:810–818

    PubMed  CAS  Google Scholar 

  3. Zoghbi WA, Farmer KL, Soto JG, Nelson JG, Quinones MA (1986) Accurate noninvasive quantification of stenotic aortic valve area by Doppler echocardiography. Circulation 73:452–459

    PubMed  CAS  Google Scholar 

  4. Zogbhi WA, Enriquez-Sorano M, Foster E et al (2004) American Society of Echocardiography: recommendations for evaluation for the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16:777–802

    Google Scholar 

  5. Leber AW, Knez A, von Ziegler F et al (2005) Quantification of obstructive and nonobsructive coronary lesions by 64-slice computed tomography:a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154. doi:10.1016/j.jacc.2005.03.071

    Google Scholar 

  6. Mollet NR, Cademartiri F, van Mieghem CA et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323. doi:10.1161/CIRCULATIONAHA.105.533471

    Article  PubMed  Google Scholar 

  7. Raff GL, Gallaugher MJ, O’Neill WW, Gold-stein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557. doi:10.1016/j.jacc.2005.05.056

    Google Scholar 

  8. Juergens KU, Grude M, Mlaintz D et al (2004) Multi-detector row CT of left ventricular function with dedicated analysis software versus MR imaging: initial experience. Radiology 230:403–410. doi:10.1148/radiol.2302030042

    Google Scholar 

  9. Raman SV, Shah M, McCarthy B et al (2006) Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am Heart J 151:736–744. doi:10.1016/j.ahj.2005.04.029

    Article  PubMed  Google Scholar 

  10. Rubin GD, Paik DS, Johnston PC, Napel S (1998) Measurement of the aorta and its branches with helical CT. Radiology 206:823–829

    PubMed  CAS  Google Scholar 

  11. Pouleur AC, Le Polain de Waroux JB, Pasquet A et al (2007) Aortic valve area assessment: multidetector CT compared with cine MR imaging and transthoracic and transesophageal echocardiography. Radiology 244(3):745–754. doi:10.1148/radiol.2443061127

    Article  PubMed  Google Scholar 

  12. Alkadhi H, Desbiolles L, Husmann L et al (2007) Aortic regurgitation: assessment with 64-section CT. Radiology 245:111–121. doi:10.1148/radiol.2451061523

    Article  PubMed  Google Scholar 

  13. Jassal DS, Shapiro MD, Neilan TG et al (2007) 64-Slice multidetector computed tomography (MDCT) for detection of aortic regurgitation and quantification of severity. Invest Radiol 42:507–512. doi:10.1097/RLI.0b013e3180375556

    Article  PubMed  Google Scholar 

  14. Matt D, Scheffel H, Leschka S et al (2007) Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR Am J Roentgenol 189(3):567–573

    Google Scholar 

  15. Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16(12):2739–2747. doi:10.1007/s00330-006-0474-0

    Article  PubMed  Google Scholar 

  16. Zogbhi WA, Enriquez-Sorano M, Foster E et al (2003) American Society of Echocardiography: recommendations for evaluation for the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16:777–802

    Google Scholar 

  17. Enriquez-Sarano M, Tajik AJ (1996) Clinical practice: aortic regurgitation. N Engl J Med 351:1539–1546. doi:10.1056/NEJMcp030912

    Article  Google Scholar 

  18. Feuchtner GM, Dichtl W, Friedrich GJ et al (2006) Multislice computed tomography for detection of patients with aortic valve stenosis and quantification of severity. J Am Coll Cardiol 47:1410–1417. doi:10.1016/j.jacc.2005.11.056

    Article  PubMed  Google Scholar 

  19. Alkadhi H, Wildermuth S, Plass A et al (2006) Aortic stenosis: comparative evaluation of 16-detector row CT and echocardiography. Radiology 239:924–932

    Google Scholar 

  20. John AS, Dill T, Brandt RR et al (2003) Magnetic resonance to assess the aortic valve area in aortic stenosis: how does it compare to current diagnostic standards? J Am Coll Cardiol 42(3):519–526. doi:10.1016/S0735-1097(03)00707-1

    Article  PubMed  Google Scholar 

  21. Kupfahl C, Honold M, Meinhardt G et al (2004) Evaluation of aortic stenosis by cardiovascular magnetic resonance imaging: comparison with established routine clinical techniques. Heart 90(8):893–901. doi:10.1136/hrt.2003.022376

    Google Scholar 

  22. Baumert B, Plass A, Bettex D et al (2005) Dynamic cine mode imaging of the normal aortic valve using 16-channel multidetector row computed tomography. Invest Radiol 40(10):637–647. doi:10.1097/01.rli.0000178363.79489.ef

    Google Scholar 

  23. Feuchtner GM, Müller S, Bonatti J et al (2007) Sixty-four slice CT evaluation of aortic stenosis using planimetry of the aortic valve area. Am J Roentgenol 189(1):197–203. doi:10.2214/AJR.07.2069

    Google Scholar 

  24. Habis M, Daoud B, Roger VL, Ghostine S, Caussin C, Ramadan R, Nottin R, Lancelin B, Angel CY, Capderou A, Paul JF (2007) Comparison of 64-slice computed tomography planimetry and Doppler echocardiography in the assessment of aortic valve stenosis. J Heart Valve Dis 16(3):216–224

    PubMed  Google Scholar 

  25. DeGroff CG, Shandas R, Valdes-Cruz L et al (1988) Analysis of the effect of flow rate on the Doppler continuity equation for stenotic orifice area calculations: a numerical study. Circulation 97(16):1597–1605

    Google Scholar 

  26. Feuchtner GM, Dichtl W, Müller S et al (2008) 64-MDCT for diagnosis of aortic regurgitation in patients referred to CT coronary angiography. Am J Roentgenol 191(1):W1–7

    Article  Google Scholar 

  27. Feuchtner GM, Dichtl W, Schachner T et al (2006) Diagnostic performance of MDCT for detecting aortic valve regurgitation. Am J Roentgenol 186(6):1676–1681. doi:10.2214/AJR.05.0967

    Google Scholar 

  28. Tops LF, Wood DA, Delgado V et al (2008) Noninvasive evaluation of the aortic root with multislice computed tomography: implications for transcatheter aortic valve replacement. J Am Coll Cardiol Imaging 1:321–330

    Google Scholar 

  29. Omran H, Schmidt H, Hackenbroch M et al (2003) Silent and apparent cerebral embolism after retrograde catheterisation of the aortic valve in valvular stenosis: a prospective, randomised study. Lancet 361:1241–1246. doi:10.1016/S0140-6736(03)12978-9

    Article  PubMed  Google Scholar 

  30. Cribier A, Eltchaninoff H, Bash A et al (2002) Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106:3006–3008. doi:10.1161/01.CIR.0000047200.36165.B8

    Article  PubMed  Google Scholar 

  31. Rosengart TK, Feldman T, Borger MA et al (2008) Percutaneous and minimally invasive valve procedures. A scientific statement from the American Heart Association Council on Cardiovascular Surgery and Anesthesia, Council on Clinical Cardiology, Functional Genomics and Translational Biology Interdisciplinary Working Group, and Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 117:1750–1767. doi:10.1161/CIRCULATIONAHA.107.188525

    Article  PubMed  Google Scholar 

  32. Grube E, Schuler G, Buellesfeld L et al (2007) Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome. J Am Coll Cardiol 50:69–76. doi:10.1016/j.jacc.2007.04.047

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National High Technology Research and Development Program of China (863 Program; No. 2007AA02Z444) and Natural Science Foundation of the Education Department of Jiangsu Province (No. FA08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangqing Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Tang, L., Zhou, L. et al. Aortic valves stenosis and regurgitation: assessment with dual source computed tomography. Int J Cardiovasc Imaging 25, 591–600 (2009). https://doi.org/10.1007/s10554-009-9456-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-009-9456-z

Keywords

Navigation