Recent developments in wide-detector cardiac computed tomography

  • Sang Il Choi
  • Richard T. George
  • Karl H. Schuleri
  • Eun Ju Chun
  • Joao A. C. Lima
  • Albert C. Lardo
Original Paper


Multidetector computed tomography (MDCT) using 64 detectors is widely used for cardiac imaging in the clinical setting. Despite promising results, 64-slice MDCT has important limitations for cardiac applications related to detector coverage, which leads to longer scan times, image artifacts, increased radiation and the need for higher contrast doses. The advent of wide or full cardiac coverage with 256- or 320-slice MDCT provides important advantages that can potentially improve the status of these limitations and expand the utility of cardiac MDCT imaging beyond coronary imaging. Additionally, the combination of wide-detectors and multi-energy acquisitions offer interesting possibilities of improved coverage and temporal resolution that may improve plaque characterization as well as viability and perfusion imaging. In this review we will discuss the current status of wide-detector MDCT scanners and their advantages for clinical coronary and ventricular imaging. We will also review examples of wide detector coronary angiography imaging and discuss emerging complementary non-coronary applications that have been enabled by wide-detector MDCT imaging.


Multi-detector computed tomography Wide-area computed tomography Cardiac CT Coronary artery disease Myocardial perfusion Myocardial viability 


  1. 1.
    Anno H, Kondo T, Katada K et al (1993) Visualization of coronary arteries with helical scanning CT: diastolic reconstruction. Nippon Igaku Hoshasen Gakkai Zasshi 53(9):1033–1039PubMedGoogle Scholar
  2. 2.
    Ramos JJ, Williams M, Synetos A et al (2007) Clinical utility of cardiac computed tomography. Am J Med Sci 334(5):350–355PubMedCrossRefGoogle Scholar
  3. 3.
    Baur LH (2008) Cardiac imaging at the emergency department is a must! The role of cardiac computed tomography and magnetic resonance imaging in the evaluation of acute chest pain in the emergency department. Int J Cardiovasc Imaging 24(3):343–344PubMedCrossRefGoogle Scholar
  4. 4.
    Pugliese F, Mollet NR, Hunink MG et al (2008) Diagnostic performance of coronary CT angiography by using different generations of multisection scanners: single-center experience. Radiology 246(2):384–393PubMedCrossRefGoogle Scholar
  5. 5.
    Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359(22):2324–2336PubMedCrossRefGoogle Scholar
  6. 6.
    Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52(21):1724–1732PubMedCrossRefGoogle Scholar
  7. 7.
    Hamon M, Morello R, Riddell JW et al (2007) Coronary arteries: diagnostic performance of 16- versus 64-section spiral CT compared with invasive coronary angiography − meta-analysis. Radiology 245(3):720–731PubMedCrossRefGoogle Scholar
  8. 8.
    Rybicki FJ, Otero HJ, Steigner ML et al (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24(5):535–546PubMedCrossRefGoogle Scholar
  9. 9.
    Steigner ML, Otero HJ, Cai T et al (2008) Narrowing the phase window width in prospectively ECG-gated single heart beat 320-detector row coronary CT angiography. Int J Cardiovasc Imaging 25(1):85–90PubMedCrossRefGoogle Scholar
  10. 10.
    Mori S, Nishizawa K, Kondo C et al (2007) Effective doses in subjects undergoing computed tomography cardiac imaging with the 256-multislice CT scanner. Eur J Radiol 65(3):442–448PubMedCrossRefGoogle Scholar
  11. 11.
    Husmann L, Valenta I, Gaemperli O et al (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29(2):191–197PubMedCrossRefGoogle Scholar
  12. 12.
    Earls JP, Berman EL, Urban BA et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246(3):742–753PubMedCrossRefGoogle Scholar
  13. 13.
    Hirai N, Horiguchi J, Fujioka C et al (2008) Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 248(2):424–430PubMedCrossRefGoogle Scholar
  14. 14.
    Herzog BA, Husmann L, Burkhard N et al (2008) Accuracy of low-dose computed tomography coronary angiography using prospective electrocardiogram-triggering: first clinical experience. Eur Heart J 29(24):3037–3042PubMedCrossRefGoogle Scholar
  15. 15.
    Dewey M, Zimmermann E, Laule M et al (2008) Three-vessel coronary artery disease examined with 320-slice computed tomography coronary angiography. Eur Heart J 29(13):1669PubMedCrossRefGoogle Scholar
  16. 16.
    Kalra MK, Brady TJ (2008) Current status and future directions in technical development of cardiac computed tomography. J Cardiovasc Comput Tomogr 2(2):71–80PubMedCrossRefGoogle Scholar
  17. 17.
    Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16(12):2739–2747PubMedCrossRefGoogle Scholar
  18. 18.
    Johnson TR, Nikolaou K, Wintersperger BJ et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16(7):1409–1415PubMedCrossRefGoogle Scholar
  19. 19.
    Matt D, Scheffel H, Leschka S et al (2007) Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR Am J Roentgenol 189(3):567–573PubMedCrossRefGoogle Scholar
  20. 20.
    Ropers D (2008) Heart rate-independent dual-source computed tomography coronary angiography: growing experience. J Cardiovasc Computed Tomogr 2(2):115–116Google Scholar
  21. 21.
    Ruzsics B, Lee H, Zwerner PL et al (2008) Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur Radiol 18(11):2414–2424PubMedCrossRefGoogle Scholar
  22. 22.
    Siemers PT, Higgins CB, Schmidt W et al (1978) Detection, quantitation and contrast enhancement of myocardial infarction utilizing computerized axial tomography: comparison with histochemical staining and 99mTc-pyrophosphate imaging. Invest Radiol 13(2):103–109PubMedCrossRefGoogle Scholar
  23. 23.
    Higgins CB, Hagen PL, Newell JD et al (1982) Contrast enhancement of myocardial infarction: dependence on necrosis and residual blood flow and the relationship to distribution of scintigraphic imaging agents. Circulation 65(4):739–746PubMedGoogle Scholar
  24. 24.
    Lardo AC, Cordeiro MA, Silva C et al (2006) Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 113(3):394–404PubMedCrossRefGoogle Scholar
  25. 25.
    Gerber BL, Belge B, Legros GJ et al (2006) Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 113(6):823–833PubMedCrossRefGoogle Scholar
  26. 26.
    Nieman K, Shapiro MD, Ferencik M et al (2008) Reperfused myocardial infarction: contrast-enhanced 64-Section CT in comparison to MR imaging. Radiology 247(1):49–56PubMedCrossRefGoogle Scholar
  27. 27.
    Chang HJ, George RT, Schuleri KH et al (2009) Prospectively ECG-gated delayed enhanced multi-detector computed tomography accurately quantifies infarct size and reduces radiation exposure by an order of magnitude. J Am Coll Cardiol Img (in press)Google Scholar
  28. 28.
    Schuleri KH, Centola M, George RT et al (2009) Characterization of peri-infarct zone heterogeneity by contrast enhanced multi-detector computed tomography: comparison with magnetic resonance imaging. J Am Coll Cardiol (in press)Google Scholar
  29. 29.
    George RT, Silva C, Cordeiro MA et al (2006) Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol 48(1):153–160PubMedCrossRefGoogle Scholar
  30. 30.
    George RT, Jerosch-Herold M, Silva C et al (2007) Quantification of myocardial perfusion using dynamic 64-detector computed tomography. Invest Radiol 42(12):815–822PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2009

Authors and Affiliations

  • Sang Il Choi
    • 1
    • 2
  • Richard T. George
    • 1
  • Karl H. Schuleri
    • 1
  • Eun Ju Chun
    • 2
  • Joao A. C. Lima
    • 1
  • Albert C. Lardo
    • 1
  1. 1.Division of Cardiology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Division of Cardiac Imaging, Department of RadiologySeoul National University Bundang HospitalSongnamSouth Korea

Personalised recommendations