In vivo non-invasive serial monitoring of FDG-PET progression and regression in a rabbit model of atherosclerosis

  • Stephen G. Worthley
  • Zhuang Y. Zhang
  • Josef Machac
  • Gérard Helft
  • Cheuk Tang
  • Gary Y. H. Liew
  • Azfar G. Zaman
  • Matthew I. Worthley
  • Zahi A. Fayad
  • Monte S. Buchsbaum
  • Valentin Fuster
  • Juan J. Badimon
Original Paper


We investigated the ability of fluorodeoxyglucose positron emission tomography (FDG PET) imaging to serially monitor macrophage content in a rabbit model of atherosclerosis. Atherosclerosis was induced in rabbits (n = 8) by a combination of atherogenic diet and balloon denudation of the aorta. At the end of nine months, the rabbits were randomized to a further six months of the same atherogenic diet (progression group) or normal diet (regression group). In vivo uptake of FDG by the thoracic aorta was measured using aortic uptake-to-blood radioactivity ratios at the start and end of the randomized period. A significant increase in FDG uptake of the progression group after continued cholesterol feeding (aortic uptake-to-blood radioactivity: 0.57 ± 0.02 to 0.68 ± 0.02, P = 0.001), and a corresponding fall in FDG uptake of the regression group after returning to a normal chow diet (aortic uptake-to-blood radioactivity ratios: 0.67 ± 0.02 to 0.53 ± 0.02, P < 0.0001). FDG PET can quantify in vivo macrophage content and serially monitor changes in FDG activity in this rabbit model.


PET Fluorodeoxyglucose Macrophages Atherosclerosis 



This work was supported by grants from the National Heart Foundation of Australia (SA Branch) (S.G.W.), the French Federation of Cardiology (G.H.) and the National Health and Medical Research Council of Australia (G.Y.H.L., No: 497809).


  1. 1.
    Worthley SG, Helft G, Zaman AG et al (2000) Atherosclerosis and the vulnerable plaque–pathogenesis: part I. Aust N Z J Med 30:600–607PubMedGoogle Scholar
  2. 2.
    Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–126. doi: 10.1056/NEJM199901143400207 PubMedCrossRefGoogle Scholar
  3. 3.
    Gronholdt ML, Dalager-Pedersen S, Falk E (1998) Coronary atherosclerosis: determinants of plaque rupture. Eur Heart J 19(Suppl C):C24–C29PubMedGoogle Scholar
  4. 4.
    Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671PubMedGoogle Scholar
  5. 5.
    Libby P (1995) Molecular bases of the acute coronary syndromes. Circulation 91:2844–2850PubMedGoogle Scholar
  6. 6.
    Berliner J, Navab M, Fogelman A et al (1995) Atherosclerosis: basic mechanisms: oxidation, inflammation, and genetics. Circulation 91:2488–2496PubMedGoogle Scholar
  7. 7.
    Shah PK, Falk E, Badimon JJ et al (1995) Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation 92:1565–1569PubMedGoogle Scholar
  8. 8.
    Galis ZS, Muszynski M, Sukhova GK et al (1994) Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res 75:181–189PubMedGoogle Scholar
  9. 9.
    Lendon C, Davies M, Born G et al (1991) Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 87:87–90. doi: 10.1016/0021-9150(91)90235-U PubMedCrossRefGoogle Scholar
  10. 10.
    Kubota R, Kubota K, Yamada S et al (1994) Microautoradiographic study for the differentiation of intratumoral macrophages, granulation tissues and cancer cells by the dynamics of fluorine-18-fluorodeoxyglucose uptake. J Nucl Med 35:104–112PubMedGoogle Scholar
  11. 11.
    Som P, Atkins HL, Bandoypadhyay D et al (1980) A fluorinated glucose analog, 2-fluoro-2-deoxy-d-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med 21:670–675PubMedGoogle Scholar
  12. 12.
    Ogawa M, Ishino S, Mukai T et al (2004) (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 45:1245–1250PubMedGoogle Scholar
  13. 13.
    Rudd JH, Warburton EA, Fryer TD et al (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105:2708–2711. doi: 10.1161/01.CIR.0000020548.60110.76 PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang Z, Machac J, Helft G et al (2006) Non-invasive imaging of atherosclerotic plaque macrophage in a rabbit model with F-18 FDG PET: a histopathological correlation. BMC Nucl Med 6:3. doi: 10.1186/1471-2385-6-3 PubMedCrossRefGoogle Scholar
  15. 15.
    Tahara N, Kai H, Ishibashi M et al (2006) Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 48:1825–1831. doi: 10.1016/j.jacc.2006.03.069 PubMedCrossRefGoogle Scholar
  16. 16.
    Helft G, Worthley SG, Fuster V et al (2001) Atherosclerotic aortic component quantification by noninvasive magnetic resonance imaging: an in vivo study in rabbits. J Am Coll Cardiol 37:1149–1154. doi: 10.1016/S0735-1097(01)01141-X PubMedCrossRefGoogle Scholar
  17. 17.
    Helft G, Worthley SG, Fuster V et al (2002) Progression and regression of atherosclerotic lesions: monitoring with serial non-invasive magnetic resonance imaging. Circulation 105:993–998. doi: 10.1161/hc0802.104325 PubMedCrossRefGoogle Scholar
  18. 18.
    Worthley SG, Helft G, Fuster V et al (2000) Serial in vivo MRI documents arterial remodelling in experimental atherosclerosis. Circulation 101:586–589PubMedGoogle Scholar
  19. 19.
    Vallabhajosula S, Fuster V (1997) Atherosclerosis: imaging techniques and the evolving role of nuclear medicine. J Nucl Med 38:1788–1796PubMedGoogle Scholar
  20. 20.
    Lees RS, Lees AM, Strauss HW (1983) External imaging of human atherosclerosis. J Nucl Med 24:154–156PubMedGoogle Scholar
  21. 21.
    Lees AM, Lees RS, Schoen FJ et al (1988) Imaging human atherosclerosis with 99mTc-labeled low density lipoproteins. Arteriosclerosis 8:461–470PubMedGoogle Scholar
  22. 22.
    Virgolani I (1989) Radiolabeling autologous monocytes with 111In oxine for reinjection im patients with atherosclerosis. Prog Clin Biol Res 355:271–274Google Scholar
  23. 23.
    Narula J, Petrov A, Bianchi C et al (1995) Noninvasive localization of experimental atherosclerotic lesions with mouse/human chimeric Z2D3 F(ab′)2 specific for the proliferating smooth muscle cells of human atheroma. Imaging with conventional and negative charge-modified antibody fragments. Circulation 92:474–484PubMedGoogle Scholar
  24. 24.
    Minar E, Ehringer H, Dudczak R et al (1989) Indium-111-labeled platelet scintigraphy in carotid atherosclerosis. Stroke 20:27–33PubMedGoogle Scholar
  25. 25.
    Davis HH, Siegel BA, Sherman LA et al (1980) Scintigraphic detection of carotid atherosclerosis with indium-111-labeled autologous platelets. Circulation 61:982–988PubMedGoogle Scholar
  26. 26.
    Mettinger KL, Larsson S, Ericson K et al (1978) Detection of atherosclerotic plaques in carotid arteries by the use of 123I-fibrinogen. Lancet 1:242–244. doi: 10.1016/S0140-6736(78)90485-3 PubMedCrossRefGoogle Scholar
  27. 27.
    Fuster V, Badimon L, Badimon J et al (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes. N Eng J Med 326(242–250):310–318Google Scholar
  28. 28.
    van der Wal AC, Becker AE, van der Loos CM et al (1994) Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89:36–44PubMedGoogle Scholar
  29. 29.
    Raffel OC, Tearney GJ, Gauthier DD et al (2007) Relationship between a systemic inflammatory marker, plaque inflammation, and plaque characteristics determined by intravascular optical coherence tomography. Arterioscler Thromb Vasc Biol 27:1820–1827. doi: 10.1161/ATVBAHA.107.145987 PubMedCrossRefGoogle Scholar
  30. 30.
    MacNeill BD, Jang IK, Bouma BE et al (2004) Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J Am Coll Cardiol 44:972–979. doi: 10.1016/j.jacc.2004.05.066 PubMedCrossRefGoogle Scholar
  31. 31.
    Brezinski M, Tearney G, Nalwalk JW et al (1997) Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart 77:397–403PubMedGoogle Scholar
  32. 32.
    Casscells W, Hathorn B, David M et al (1996) Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet 347:1447–1451PubMedCrossRefGoogle Scholar
  33. 33.
    Worthley SG, Helft G, Fuster V et al (2000) High resolution ex vivo magnetic resonance imaging of in situ coronary and aortic atherosclerotic plaque in a porcine model. Atherosclerosis 150:321–329. doi: 10.1016/S0021-9150(99)00386-X PubMedCrossRefGoogle Scholar
  34. 34.
    Toussaint J, LaMuraglia G, Southern J et al (1996) Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 94:932–938PubMedGoogle Scholar
  35. 35.
    Demacker PN, Dormans TP, Koenders EB et al (1993) Evaluation of indium-111-polyclonal immunoglobulin G to quantitate atherosclerosis in Watanabe heritable hyperlipidemic rabbits with scintigraphy: effect of age and treatment with antioxidants or ethinylestradiol. J Nucl Med 34:1316–1321PubMedGoogle Scholar
  36. 36.
    Di Chiro G, DeLaPaz RL, Brooks RA et al (1982) Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 32:1323–1329PubMedGoogle Scholar
  37. 37.
    Weber G (1977) Enzymology of cancer cells (second of two parts). N Engl J Med 296:541–551PubMedGoogle Scholar
  38. 38.
    Renner ED, Plagemann PG, Bernlohr RW (1972) Permeation of glucose by simple and facilitated diffusion by Novikoff rat hepatoma cells in suspension culture and its relationship to glucose metabolism. J Biol Chem 247:5765–5776PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2008

Authors and Affiliations

  • Stephen G. Worthley
    • 1
    • 2
  • Zhuang Y. Zhang
    • 3
  • Josef Machac
    • 3
  • Gérard Helft
    • 1
  • Cheuk Tang
    • 4
  • Gary Y. H. Liew
    • 2
  • Azfar G. Zaman
    • 1
  • Matthew I. Worthley
    • 2
  • Zahi A. Fayad
    • 1
  • Monte S. Buchsbaum
    • 4
  • Valentin Fuster
    • 1
  • Juan J. Badimon
    • 1
  1. 1.Zena and Michael A. Wiener Cardiovascular InstituteThe Mount Sinai Medical CenterNew YorkUSA
  2. 2.Cardiovascular Investigation Unit, Cardiac Catheterization Laboratories, The Cardiovascular Research CentreRoyal Adelaide HospitalAdelaideAustralia
  3. 3.Department of Nuclear MedicineThe Mount Sinai Medical CenterNew YorkUSA
  4. 4.Department of Psychiatry, Neuroscience PET LaboratoryThe Mount Sinai Medical CenterNew YorkUSA

Personalised recommendations