Skip to main content
Log in

The effect of left bundle branch block on left ventricular remodeling, dyssynchrony and deformation of the mitral valve apparatus: an observational cardiovascular magnetic resonance imaging study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Background

The effect of a left bundle branch block (LBBB) on cardiac function and remodeling in patients at different stages of heart failure (HF) is unknown.

We used cardiac magnetic resonance imaging (CMR) to evaluate the effect of LBBB on left ventricular (LV) remodeling, mechanical dyssynchrony, functional mitral regurgitation (FMR) and deformation of the mitral valve apparatus (MVA) in LBBB patients at different stages of HF.

Methods

In 12 LBBB patients with HF, 4 patients with isolated LBBB, and 4 controls, cine CMR was performed to measure LV remodeling, FMR grade and deformation of the MVA. CMR tagging was used to measure septal-to-lateral onset of shortening delay and coefficient of circumferential strain variation (CV) to quantify dyssynchrony.

Results

LV end-diastolic volume (LVEDV) and end-systolic volume (LVESV) were largest in LBBB patients with HF. Patients with isolated LBBB tended to have a larger LVESV and smaller LV ejection fraction compared to controls, (56 ± 22 ml/m2 versus 45 ± 9 ml/m2, P = ns, 42  ± 9% versus 53 ± 4 %, P = ns). QRS duration and septal-to-lateral-onset-of-shortening delay were comparable between LBBB patients with HF and isolated LBBB patients, CV was larger (98 ± 45 versus 40 ± 4, P < 0.05). MVA tenting and FMR were present both in LBBB patients with HF and patients with isolated LBBB and were not observed in controls.

Conclusion

The presence of a LBBB in asymptomatic patients is related to mechanical dyssynchrony and deformation of the MVA and may be associated with LV remodeling. If confirmed, close monitoring or even timely initiation of therapy may be warranted in patients with isolated LBBB. This advocates to conduct a longitudinal CMR follow-up study on the clinical course in patients with isolated LBBB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baldasseroni S, Opasich C, Gorini M et al (2002) Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian network on congestive heart failure. Am Heart J 143:398–405

    Article  PubMed  Google Scholar 

  2. Iuliano S, Fisher SG, Karasik PE et al (2002) QRS duration and mortality in patients with congestive heart failure. Am Heart J 143:1085–1091

    Article  PubMed  Google Scholar 

  3. Kalra PR, Sharma R, Shamim W et al (2002) Clinical characteristics and survival of patients with chronic heart failure and prolonged QRS duration. Int J Cardiol 86:225–231

    Article  PubMed  Google Scholar 

  4. Shamim W, Francis DP, Yousufuddin M et al (1999) Intraventricular conduction delay: a prognostic marker in chronic heart failure. Int J Cardiol 70:171–178

    Article  PubMed  CAS  Google Scholar 

  5. Shenkman HJ, Pampati V, Khandelwal AK et al (2002) Congestive heart failure and QRS duration: establishing prognosis study. Chest 122:528–534

    Article  PubMed  Google Scholar 

  6. Grines CL, Bashore TM, Boudoulas H et al (1989) Functional abnormalities in isolated left bundle branch block The effect of interventricular asynchrony. Circulation 79:845–853

    PubMed  CAS  Google Scholar 

  7. Kang SJ, Song JK, Yang HS et al (2004) Systolic and diastolic regional myocardial motion of pacing-induced versus idiopathic left bundle branch block with and without left ventricular dysfunction. Am J Cardiol 93:1243–1246

    Article  PubMed  Google Scholar 

  8. Nelson GS, Curry CW, Wyman BT et al (2000) Predictors of systolic augmentation from left ventricular preexcitation in patients with dilated cardiomyopathy and intraventricular conduction delay. Circulation 101:2703–2709

    PubMed  CAS  Google Scholar 

  9. Vernooy K, Verbeek XA, Peschar M et al (2005) Left bundle branch block induces ventricular remodelling and functional septal hypoperfusion. Eur Heart J 26:91–98

    Article  PubMed  Google Scholar 

  10. Breithardt OA, Sinha AM, Schwammenthal E et al (2003) Acute effects of cardiac resynchronization therapy on functional mitral regurgitation in advanced systolic heart failure. J Am Coll Cardiol 41:765–770

    Article  PubMed  Google Scholar 

  11. Kono T, Sabbah HN, Stein PD et al (1991) Left ventricular shape as a determinant of functional mitral regurgitation in patients with severe heart failure secondary to either coronary artery disease or idiopathic dilated cardiomyopathy. Am J Cardiol 68:355–359

    Article  PubMed  CAS  Google Scholar 

  12. Kwan J, Shiota T, Agler DA et al (2003) Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation: real-time three-dimensional echocardiography study. Circulation 107:1135–1140

    Article  PubMed  Google Scholar 

  13. Nagasaki M, Nishimura S, Ohtaki E et al (2005) The echocardiographic determinants of functional mitral regurgitation differ in ischemic and non-ischemic cardiomyopathy. Int J Cardiol 108:171–176

    Article  Google Scholar 

  14. Otsuji Y, Kumanohoso T, Yoshifuku S et al (2002) Isolated annular dilation does not usually cause important functional mitral regurgitation: comparison between patients with lone atrial fibrillation and those with idiopathic or ischemic cardiomyopathy. J Am Coll Cardiol 39:1651–1656

    Article  PubMed  Google Scholar 

  15. Yiu SF, Enriquez-Sarano M, Tribouilloy C et al (2000) Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction: a quantitative clinical study. Circulation 102:1400–1406

    PubMed  CAS  Google Scholar 

  16. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35:569–582

    Article  PubMed  CAS  Google Scholar 

  17. Douglas PS, Morrow R, Ioli A et al (1989) Left ventricular shape, afterload and survival in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 13:311–315

    PubMed  CAS  Google Scholar 

  18. Gaudron P, Eilles C, Kugler I et al (1993) Progressive left ventricular dysfunction and remodeling after myocardial infarction Potential mechanisms and early predictors. Circulation 87:755–763

    PubMed  CAS  Google Scholar 

  19. Mitchell GF, Lamas GA, Vaughan DE et al (1992) Left ventricular remodeling in the year after first anterior myocardial infarction: a quantitative analysis of contractile segment lengths and ventricular shape. J Am Coll Cardiol 19:1136–1144

    Article  PubMed  CAS  Google Scholar 

  20. White HD, Norris RM, Brown MA et al (1987) Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76:44–51

    PubMed  CAS  Google Scholar 

  21. Bellenger NG, Burgess MI, Ray SG et al (2000) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 21:1387–1396

    Article  PubMed  CAS  Google Scholar 

  22. Bottini PB, Carr AA, Prisant LM et al (1995) Magnetic resonance imaging compared to echocardiography to assess left ventricular mass in the hypertensive patient. Am J Hypertens 8:221–228

    Article  PubMed  CAS  Google Scholar 

  23. Grothues F, Smith GC, Moon JC et al (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 90:29–34

    Article  PubMed  Google Scholar 

  24. Kon MW, Myerson SG, Moat NE et al (2004) Quantification of regurgitant fraction in mitral regurgitation by cardiovascular magnetic resonance: comparison of techniques. J Heart Valve Dis 13:600–607

    PubMed  Google Scholar 

  25. Zwanenburg JJ, Gotte MJ, Marcus JT et al (2005) Propagation of onset and peak time of myocardial shortening in time of myocardial shortening in ischemic versus nonischemic cardiomyopathy: assessment by magnetic resonance imaging myocardial tagging. J Am Coll Cardiol 2215–2222

  26. Zwanenburg JJ, Gotte MJ, Kuijer JP et al (2004) Timing of cardiac contraction in humans mapped by high-temporal-resolution MRI tagging: early onset and late peak of shortening in lateral wall. Am J Physiol Heart Circ Physiol 286:H1872-H1880

    Article  PubMed  CAS  Google Scholar 

  27. van der Geest RJ, Buller VG, Jansen E et al (1997) Comparison between manual and semiautomated analysis of left ventricular volume parameters from short-axis MR images. J Comput Assist Tomogr 21:756–765

    Article  PubMed  Google Scholar 

  28. Salton CJ, Chuang ML, O’Donnell CJ et al (2002) Gender differences and normal left ventricular anatomy in an adult population free of hypertension A cardiovascular magnetic resonance study of the Framingham Heart Study Offspring cohort. J Am Coll Cardiol 39:1055–1060

    Article  PubMed  Google Scholar 

  29. Helm RH, Leclercq C, Faris OP et al (2005) Cardiac dyssynchrony analysis using circumferential versus longitudinal strain: implications for assessing cardiac resynchronization. Circulation 111:2760–2767

    Article  PubMed  Google Scholar 

  30. Osman NF, Kerwin WS, McVeigh ER et al (1999) Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med 42:1048–1060

    Article  PubMed  CAS  Google Scholar 

  31. Yu CM, Fung JW, Chan CK et al (2004) Comparison of efficacy of reverse remodeling and clinical improvement for relatively narrow and wide QRS complexes after cardiac resynchronization therapy for heart failure. J Cardiovasc Electrophysiol 15:1058–1065

    Article  PubMed  Google Scholar 

  32. Knaapen P, van Campen LM, de Cock CC et al (2004) Effects of cardiac resynchronization therapy on myocardial perfusion reserve. Circulation 110:646–651

    Article  PubMed  Google Scholar 

  33. Yu CM, Bleeker GB, Fung JW et al (2005) Left ventricular reverse remodeling but not clinical improvement predicts long-term survival after cardiac resynchronization therapy. Circulation 112:1580–1586

    Article  PubMed  Google Scholar 

  34. Otsuji Y, Handschumacher MD, Schwammenthal E et al (1997) Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry. Circulation 96:1999–2008

    PubMed  CAS  Google Scholar 

  35. Yu HY, Su MY, Liao TY et al (2004) Functional mitral regurgitation in chronic ischemic coronary artery disease: analysis of geometric alterations of mitral apparatus with magnetic resonance imaging. J Thorac Cardiovasc Surg 128:543–551

    Article  PubMed  Google Scholar 

  36. He S, Fontaine AA, Schwammenthal E et al (1997) Integrated mechanism for functional mitral regurgitation: leaflet restriction versus coapting force: in vitro studies. Circulation 96:1826–1834

    PubMed  CAS  Google Scholar 

  37. Srichai MB, Grimm RA, Stillman AE et al (2005) Ischemic mitral regurgitation: impact of the left ventricle and mitral valve in patients with left ventricular systolic dysfunction. Ann Thorac Surg 80:170–178

    Article  PubMed  Google Scholar 

  38. Yu HY, Su MY, Chen YS et al (2005) Mitral tetrahedron as a geometrical surrogate for chronic ischemic mitral regurgitation. Am J Physiol Heart Circ Physiol 289:H1218-H1225

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tjeerd Germans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Land, V., Germans, T., van Dijk, J. et al. The effect of left bundle branch block on left ventricular remodeling, dyssynchrony and deformation of the mitral valve apparatus: an observational cardiovascular magnetic resonance imaging study. Int J Cardiovasc Imaging 23, 529–536 (2007). https://doi.org/10.1007/s10554-006-9187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-006-9187-3

Keywords

Navigation