3D MR coronary angiography: optimization of the technique and preliminary results

  • Niek Hendrik Jan PrakkenEmail author
  • Evert-Jan P.A. Vonken
  • Birgitta K. Velthuis
  • Pieter A.F.M Doevendans
  • Maarten-Jan M. Cramer



Current clinical full MR angiography with multiple breathhold multiple thin slab acquisition (MTS) is difficult and arduous. This study describes the optimisation of the whole heart free – breathing balanced turbo field echo (B-TFE) protocol. A high-resolution image of the whole heart is produced in less or comparable time to MTS acquisition and allows for reconstruction afterwards to visualise the individual coronary arteries. The scan is easily performed because the volume has to be targeted only once.

Design and setting:

Eighteen healthy adults without a history of cardiovascular disease underwent free-breathing 3D MR angiography with the B-TFE protocol. The whole-heart data set was reformatted in identical orientations in all subjects to visualise the major coronary arteries.

Main outcome measures:

Vessel length, signal and contrast to noise ratio were determined and compared for each vessel.


Mean visible vessel lengths were 116 mm for the right, 102 mm for the left main and left descending and 76 mm for the left circumflex coronary artery. The average signal to noise ratio was 7.5 and contrast to noise ratio was 4.9. Because of the need for synchronised cardiac and respiratory triggering the coronaries could not be judged in 25% of the subjects.


The optimised B-TFE protocol had equal judgeability and vessels could be judged over longer contiguous distances compared to earlier implementations of the B-TFE protocol. We conclude whole heart free breathing navigator-gated and slice-tracked 3D coronary MR angiography with use of the adjusted B-TFE protocol is possible, but still suboptimal for clinical use.


angiography coronary artery pathology magnetic resonance imaging whole heart 





balanced turbo field echo


contrast to noise ratio


computed tomography angiography




field of view


left anterior descending artery


left circumflex artery


left main coronary artery


magnetic resonance imaging


magnetic resonance angiography


multiple thin slab


right coronary artery


signal to noise ratio


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weber OM, Martin AJ, Higgins CB (2003) Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med 50: 1223–1228PubMedCrossRefGoogle Scholar
  2. 2.
    Danias PG, Roussakis A, Ioannidis JP (2004) Diagnostic performance of coronary magnetic resonance angiography as compared against conventional X-ray angiography: a meta-analysis. J Am Coll Cardiol 44(9):1867–1876PubMedGoogle Scholar
  3. 3.
    Wittlinger T, Voigtlander T, Rohr M et al. (2002) Magnetic resonance imaging of coronary artery occlusions in the navigator technique. Int J Cardiovasc Imaging 18(3):203–211; discussion 213–5PubMedCrossRefGoogle Scholar
  4. 4.
    Kim WY, Danias PG, Stuber M et al. (2001) Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 345:1863–1869PubMedCrossRefGoogle Scholar
  5. 5.
    Klem I, Sechtem U (2004) Is coronary magnetic resonance angiography already a clinically useful diagnostic tool?. Dtsch Med Wochenschr 129(50):2733–2738PubMedCrossRefGoogle Scholar
  6. 6.
    Weber OM, Pujadas S, Martin AJ et al. (2004) Free-breathing, three-dimensional coronary artery magnetic resonance angiography: comparison of sequences. J Magn Reson Imaging 20:395–402PubMedCrossRefGoogle Scholar
  7. 7.
    Spuentrup E, Katoh M, Buecker A et al. (2004) Free-breathing 3D steady-state free precession coronary MR angiography with radial k-space sampling: comparison with cartesian k-space sampling and cartesian gradient-echo coronary MR angiography–pilot study. Radiology. 231(2):581–586PubMedCrossRefGoogle Scholar
  8. 8.
    Riederer SJ (2004) Coronary artery mr angiography: are we there yet? Radiology 231:302–304PubMedCrossRefGoogle Scholar
  9. 9.
    Spuentrup E, Katoh M, Stuber M et al. (2003) Coronary MR imaging using free-breathing 3D steady-state free precession with radial k-space sampling. Rofo 175(10):1330–1334PubMedGoogle Scholar
  10. 10.
    Kim WY, Stuber M, Bornert P et al. (2002) Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 106:296–299PubMedCrossRefGoogle Scholar
  11. 11.
    Wang Y, Watts R, Mitchell IR et al. (2001) Coronary MR angiography: selection of acquisition window of minimal cardiac motion with electrocardiography-triggered navigator cardiac motion prescanning – initial results. Radiology 218:580–585PubMedGoogle Scholar
  12. 12.
    Hackenbroch M, Meyer C, Beck G et al. (2005). 3D motion adapted gating: a new navigator technique to shorten the acquisition time for coronary MRA. Rofo 177(3):350–357PubMedGoogle Scholar
  13. 13.
    Jahnke C, Paetsch I, Nehrke K, et al. Rapid and complete coronary arterial tree visualization with magnetic resonance imaging: feasibility and diagnostic performance. Eur Heart J 2005 Jun 29; [Epub ahead of print]Google Scholar
  14. 14.
    Du YP, McVeigh ER, Bluemke DA et al. (2001) A comparison of prospective and retrospective respiratory navigator gating in 3D MR coronary angiography. Int J Cardiovasc Imaging. 17(4):287–294; discussion 295–6PubMedCrossRefGoogle Scholar
  15. 15.
    Stuber M, Botnar RM, Danias PG et al. (1999) Submillimeter three-dimensional coronary mr angiography with real-time navigator correction: comparison of navigator locations. Radiology 212(2):579–587PubMedGoogle Scholar
  16. 16.
    Scheffler K, Lehnhardt S (2003) Principles and applications of balanced SSFP techniques. Eur Radiol 13:2409–2418PubMedCrossRefGoogle Scholar
  17. 17.
    Botnar RM, Stuber M, Danias PG et al. (1999) Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation 99:3139–3148PubMedGoogle Scholar
  18. 18.
    Stehning C, Börnert P, Nehrke K et al. (2004) Fast isotropic volumetric coronary MR angiography using free-breathing 3D radial balanced FFE acquisition. Magn Reson Med 52:197–203PubMedCrossRefGoogle Scholar
  19. 19.
    Huber ME, Kozerke S, Pruessmann KP et al. (2004) Sensitivity-encoded coronary MRA at 3T. Magn Reson Med 52(2):221–227PubMedCrossRefGoogle Scholar
  20. 20.
    Westbrook C. MRI at a Glance. Blackwell Publishing Ltd 2003Google Scholar
  21. 21.
    PHILIPS. Basic Principles of MR Imaging.1st edn. Best 1994Google Scholar
  22. 22.
    Kaul MG, Stork A, Bansmann PM, et al. Evaluation of balanced Steady-State Free Precession (TrueFISP) and K-space Segmented Gradient Echo Sequences for 3D Coronary MR Angiography with Navigator Gating at 3 Tesla. Fortschr Röntgenstr 2004: 1560–1565Google Scholar
  23. 23.
    Etienne A, Botnar RM, van Muiswinkel AMC et al. (2002) “Soap-bubble” visualization and quantitative analysis of 3D coronary magnetic resonance angiograms. Magn Reson Med 48:658–666PubMedCrossRefGoogle Scholar
  24. 24.
    Shea SM, Kroeker RM, Deshpande V (2001) Coronary artery imaging: 3D segmented k-space data acquisition with multiple breath-holds and real-time slab following. J Magn Reson Imaging 13:301–307PubMedCrossRefGoogle Scholar
  25. 25.
    Regenfus M, Ropers D, Achenbach S et al. (2000) Noninvasive detection of coronary artery stenosis using contrast-enhanced three-dimensional breath-hold magnetic resonance coronary angiography. J Am Coll Cardiol 36(1):44–50PubMedCrossRefGoogle Scholar
  26. 26.
    Kefer J, Coche E, Legros G et al. (2005) Head-to-head comparison of three-dimensional navigator-gated magnetic resonance imaging and 16-slice computed tomography to detect coronary artery stenosis in patients. J Am Coll Cardiol 46:92–100PubMedCrossRefGoogle Scholar
  27. 27.
    Gerber BL, Coche E, Pasquet A et al. (2005) Coronary artery stenosis: direct comparison of four-section multi–detector row CT and 3D navigator MR imaging for detection—initial results Radiology 234(1):98–108PubMedCrossRefGoogle Scholar
  28. 28.
    Sakuma H, Ichikawa Y, Suzawa N et al. (2005) Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary mr angiography. Radiology 237:316–321PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Niek Hendrik Jan Prakken
    • 2
    • 1
    Email author
  • Evert-Jan P.A. Vonken
    • 2
  • Birgitta K. Velthuis
    • 2
  • Pieter A.F.M Doevendans
    • 3
  • Maarten-Jan M. Cramer
    • 4
  1. 1.Department of RadiologyUniversity Medical CenterUtrechtThe Netherlands
  2. 2.Department of RadiologyUniversity Medical CentreUtrechtThe Netherlands
  3. 3.Inter-universitary institute of cardiologyUniversity Medical CentreUtrechtThe Netherlands
  4. 4.Department of CardiologyUniversity Medical CentreUtrechtThe Netherlands

Personalised recommendations