Advertisement

A Novel Model to Test Accuracy and Reproducibility of MDCT Scan Protocols for Coronary Calcium in Vivo

  • Michael Rosol
  • Karina Sachdev
  • Christian N. Enzweiler
  • Dylan C. Kwait
  • Ryan Millea
  • James Titus
  • Jason Handwerker
  • Stephan Wicky
  • Stephen Achenbach
  • Thomas J. Brady
  • Udo Hoffmann
Article

Abstract

Objectives: We compared the accuracy and reliability of prospectively triggered, retrospectively ECG gated, and non-gated CT image reconstruction for measurements of coronary artery calcification (CAC) in vivo using a novel animal model. Materials and Methods: In six Yorkshire farm pigs, prefabricated chains of cortical bone fragments were sutured over the epicardial bed of the major coronary arteries. Using a 4-slice MDCT scanner, each animal was imaged with two different protocols: sequential acquisition with prospective ECG triggering, and spiral acquisition with retrospectively ECG gated image reconstruction- non-gated reconstructions were also generated from these latter scans. Two independent observers measured the ‘Agatston score’ (AS), the calcified volume (CV), and mineral mass (MM). To calculate accuracy of MM measurements the ash weight of the burned bone fragments was compared to MDCT derived MM. Results: Six pigs successfully underwent surgery and CT imaging (mean heart rate: 86 ±12 bpm). MM measurements from prospectively ECG triggered CT sequential scans were more accurate (p<0.02) and reproducible (p=0.05) than sequential CT scans without ECG triggering or spiral acquisition using retrospective ECG gating. Conclusions: At high heart rates prospective ECG triggered image reconstruction is more accurate and reproducible for CAC scoring than retrospective ECG gated reconstruction and non-gated reconstruction.

Keywords

artery imaging calcium scoring coronary artery imaging MDCT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MJ Budoff, GA Diamond and P Raggi, Continuous probabilistic prediction of angiographically significant coronary artery disease using electron beam tomography. Circulation 105 (2002) 1791-1796PubMedCrossRefGoogle Scholar
  2. 2.
    LF Bielak, JA Rumberger, PF Sheedy II, RS Schwartz and PA Peyser, Probabilistic model for prediction of angiographically defined obstructive coronary artery disease using electron beam computed tomography calcium score strata. Circulation 102 (2000) 380-385PubMedGoogle Scholar
  3. 3.
    PG O’Malley, AJ Taylor, JL Jackson, TM Doherty and RC Detrano, Prognostic value of coronary electron-beam computed tomography for coronary heart disease events in asymptomatic populations. Am J Cardiol 85 (2000) 945-948PubMedCrossRefGoogle Scholar
  4. 4.
    S Achenbach, D Ropers and K Pohle, Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation. Circulation 106 (2002) 1077-1082CrossRefPubMedGoogle Scholar
  5. 5.
    TQ Callister, P Raggi, B Cooil, NJ Lippolis and DJ Russo, Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med 339 (1998) 1972-1978PubMedCrossRefGoogle Scholar
  6. 6.
    HS Hecht and SM Harman, Evaluation by electron beam tomography of changes in calcified coronary plaque in treated and untreated asymptomatic patients and relation to serum lipid levels. The American Journal of Cardiology 91 (2003) 1131-1134PubMedCrossRefGoogle Scholar
  7. 7.
    RA O’Rourke, BH Brundage and VF Froelicher, American College of Cardiology/American Heart Association Expert Consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. Circulation 102 (2000) 126-140PubMedGoogle Scholar
  8. 8.
    S Achenbach, D Ropers and S Mohlenkamp, Variability of repeated coronary artery calcium measurements by electron beam tomography. Am J Cardiol 87 (2001) 210-213PubMedCrossRefGoogle Scholar
  9. 9.
    CR Becker, T Kleffel and A Crispin, Coronary artery calcium measurement: agreement of multirow detector and electron beam CT. AJR Am J Roentgenol 176 (2001) 1295-1298PubMedGoogle Scholar
  10. 10.
    JJ Carr, JR Crouse III, DC Goff Jr, RB D’Agostino Jr, NP Peterson and GL Burke, Evaluation of subsecond gated helical CT for quantification of coronary artery calcium and comparison with electron beam CT. AJR Am J Roentgenol 174 (2000) 915-921PubMedGoogle Scholar
  11. 11.
    PM Ooijen van, R Vliegenthart, JC Witteman and M Oudkerk, Influence of scoring parameter settings on Agatston and volume scores for coronary calcification. Eur Radiol 15 (2005) 102-110PubMedCrossRefGoogle Scholar
  12. 12.
    TF Jakobs, BJ Wintersperger and P Herzog, Ultra-low-dose coronary artery calcium screening using multislice CT with retrospective ECG gating. Eur Radiol 13 (2003) 1923-1930CrossRefPubMedGoogle Scholar
  13. 13.
    U Hoffmann, DC Kwait, J Handwerker, R Chan, G Lamuraglia and TJ Brady, Vascular calcification in ex vivo carotid specimens: Precision and accuracy of measurements with multi-detector row CT. Radiology 229 (2003) 375-381PubMedCrossRefGoogle Scholar
  14. 14.
    C Hong, KT Bae and TK Pilgram, Coronary artery calcium: Accuracy and reproducibility of measurements with multi-detector row CT–assessment of effects of different thresholds and quantification methods. Radiology 227 (2003) 795-801PubMedCrossRefGoogle Scholar
  15. 15.
    CH McCollough, RB Kaufmann, BM Cameron, DJ Katz, PF Sheedy II and PA Peyser, Electron-beam CT: use of a calibration phantom to reduce variability in calcium quantitation. Radiology 196 (1995) 159-165PubMedGoogle Scholar
  16. 16.
    Hoffmann U B-SA, Achenbach S, Ferencik M, Brady TJ, Levy D, O’Donnell CJ. Interscan and interobserver Variability of coronary artery calcium measurements in prospectively triggered multislice computed tomography. Radiology 2003; SupplementGoogle Scholar
  17. 17.
    AS Agatston, WR Janowitz, FJ Hildner, NR Zusmer, M Viamonte Jr. and R Detrano, Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15 (1990) 827-832PubMedCrossRefGoogle Scholar
  18. 18.
    M Ferencik, A Ferullo and S Achenbach, Coronary calcium quantification using various calibration phantoms and scoring thresholds. Invest Radiol 38 (2003) 559-566PubMedCrossRefGoogle Scholar
  19. 19.
    K Schmid, WO McSharry, CH Pameijer and JP Binette, Chemical and physicochemical studies on the mineral deposits of the human atherosclerotic aorta. Atherosclerosis 37 (1980) 199-210PubMedCrossRefGoogle Scholar
  20. 20.
    B Lu, SS Mao and N Zhuang, Coronary artery motion during the cardiac cycle and optimal ECG triggering for coronary artery imaging. Invest Radiol. 36 (2001) 250-256CrossRefPubMedGoogle Scholar
  21. 21.
    CR Becker, A Knez, B Ohnesorge, UJ Schoepf and MF Reiser, Imaging of noncalcified coronary plaques using helical CT with retrospective ECG gating. AJR Am J Roentgenol 175 (2000) 423-424PubMedGoogle Scholar
  22. 22.
    B Ohnesorge, T Flohr and C Becker, Cardiac imaging with rapid, retrospective ECG synchronized multilevel spiral CT. Radiologe 40 (2000) 111-117PubMedCrossRefGoogle Scholar
  23. 23.
    S Wicky, M Rosol and LM Hamberg, Evaluation of retrospective multisector and half scan ECG-gated multidetector cardiac CT protocols with moving phantoms. J Comput Assist Tomogr 26 (2002) 768-776CrossRefPubMedGoogle Scholar
  24. 24.
    Wicky S, Hoffmann U, Rosol M, Yucel K, Brady T. Comparative study of a moving heart phantom with two ECG-gated units. In:ESCR. Luzern, Switzerland, 2002Google Scholar
  25. 25.
    T Giesler, U Baum and D Ropers, Noninvasive visualization of coronary arteries using contrast-enhanced multidetector CT: Influence of heart rate on image quality and stenosis detection. AJR Am J Roentgenol 179 (2002) 911-916PubMedGoogle Scholar
  26. 26.
    S Achenbach, S Ulzheimer and U Baum, Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation 102 (2000) 2823-2828PubMedGoogle Scholar
  27. 27.
    T Flohr and B Ohnesorge, Heart rate adaptive optimization of spatial and temporal resolution for electrocardiogram-gated multislice spiral CT of the heart. J Comput Assist Tomogr 25 (2001) 907-923CrossRefPubMedGoogle Scholar
  28. 28.
    T Flohr and B Ohnesorge, Heart rate adaptive optimization of spatial and temporal resolution for electrocardiogram-gated multislice spiral CT of the heart. J Comput Assist Tomogr 25 (2001) 907-923CrossRefPubMedGoogle Scholar
  29. 29.
    RL Morin, TC Gerber and CH McCollough, Radiation dose in computed tomography of the heart. Circulation 107 (2003) 917-922CrossRefPubMedGoogle Scholar
  30. 30.
    S Mao, J Child, S Carson, SC Liu, RJ Oudiz and MJ Budoff, Sensitivity to detect small coronary artery calcium lesions with varying slice thickness using electron beam tomography. Invest Radiol 38 (2003) 183-187CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Michael Rosol
    • 1
    • 4
  • Karina Sachdev
    • 1
  • Christian N. Enzweiler
    • 1
  • Dylan C. Kwait
    • 1
  • Ryan Millea
    • 1
  • James Titus
    • 2
  • Jason Handwerker
    • 1
  • Stephan Wicky
    • 1
  • Stephen Achenbach
    • 1
    • 3
  • Thomas J. Brady
    • 1
  • Udo Hoffmann
    • 1
  1. 1.Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Department of Cardiac SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  3. 3.Department of Internal Medicine IIUniversity of ErlangenGermany
  4. 4.Department of RadiologyChildrens Hospital Los Angeles and the University of Southern California Keck School of MedicineLos AngelesUSA

Personalised recommendations