Coronary vessel visualization using true 16-row multi-slice computed tomography technology

  • Axel Kuettner
  • Christof Burgstahler
  • Torsten Beck
  • Tanja Drosch
  • Andreas F. Kopp
  • Martin Heuschmid
  • Claus D. Claussen
  • Stephen Schroeder


Background :Multi-slice computed tomography (MSCT) scanners with retrospective ECG-gating permit visualization of the coronary arteries. Limited spatial and temporal resolution as well as breathing artefacts due to the scan time can cause poor distal vessel segment and side branch visualization. The latest MSCT generation with true 16-detector slices (Sensation 16 ®, Siemens, Forchheim, Germany) provides furthermore improved temporal and spatial resolution, as well as significantly reduced scan time. To assess, whether this technical improvement has also an impact on image quality we conducted the following study. Methods and material :Sixty-two consecutive patients (33 male, 29 female, mean age 63±8 [47–79] years, heart rate after β-blockade 63±7 [45–86] bpm) with suspicion of coronary artery disease (CAD) were examined by cardiac MSCT. Parameter settings were: 0.75mm collimation, 2.8mm table feed/rotation, caudocranial scan direction, 80cc contrast media biphasic injection protocol, gantry rotation time 375ms, temporal resolution 188ms). Thirteen coronary segments (sgts) were evaluated in each patient (total number: 806sgts). Image quality of each segment was determined as: excellent – free of motion artefacts, good – mild motion artefacts, relevant artefacts – still diagnostic value, severe calcification and insufficient image quality – not visualized segment. Results :301/806 (37%) sgts showed excellent and 294/806 (36%) sgts good image quality. Relevant artefacts were seen in 107/806 (13%) sgts, calcifications in 41/806 (5%) sgts. 63/806 (8%) sgts could not be visualized (34 of them (54%) either segment 9 or 10). Diagnostic image quality was achieved in 702/806 (87%) sgts. Conclusions :Due to true 16-slice technology and faster gantry rotation time MSCT image quality could be improved and allows a visualization of the entire coronary tree. Larger, randomized, catheter-controlled studies have to be conducted to determine, whether this improved visualization also translates into better diagnostic accuracy.


coronary artery disease image quality imaging technique multi-slice computed tomography 16 row 



beats per minute


coronary artery disease


milli ampere second


maximal intensity projection


multiplanar reformation


multi-slice computed tomography




per os






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ropers, D, Baum, U, Pohle, K.,  et al. 2003Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstructionCirculation107664666PubMedGoogle Scholar
  2. 2.
    Schroeder, S, Kopp, AF, Baumbach, A.,  et al. 2001Non-invasive characterisation of coronary lesion morphology by multi-slice computed tomography: a promising new technology for risk stratification of patients with coronary artery diseaseHeart85576578CrossRefGoogle Scholar
  3. 3.
    Kopp, AF, Ohnesorge, B, Flohr, T.,  et al. 2000[Cardiac multidetector-row CT: first clinical results of retrospectively ECG-gated spiral with optimized temporal and spatial resolution]Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr172429435PubMedGoogle Scholar
  4. 4.
    Schroeder, S, Kopp, AF, Kuettner, A.,  et al. 2002Influence of heart rate on vessel visibility in noninvasive coronary angiography using new multislice computed tomography: experience in 94 patientsClin Imaging26106111PubMedGoogle Scholar
  5. 5.
    Giesler, T, Baum, U, Ropers, D.,  et al. 2002Noninvasive visualization of coronary arteries using contrast-enhanced multidetector CT: influence of heart rate on image quality and stenosis detectionAJR Am J Roentgenol17991l916Google Scholar
  6. 6.
    Gerber, TC, Kuzo, RS, Lane, GE.,  et al. 2003Image quality in a standardized algorithm for minimally invasive coronary angiography with multislice spiral computed tomographyJ Comput Assist Tomogr276269PubMedGoogle Scholar
  7. 7.
    Kuettner, A, Kopp, AF, Schroeder, S.,  et al. 2004Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with angiographically proven coronary artery diseaseJ Am Coll Cardiol43831839CrossRefPubMedGoogle Scholar
  8. 8.
    Nieman, K, Cademartiri, F, Lemos, PA, Raaijmakers, R, Pattynama, PM, De Feyter, PJ. 2002Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomographyCirculation10620512054PubMedGoogle Scholar
  9. 9.
    Kopp, AF, Schroeder, S, Baumbach, A.,  et al. 2001Non-invasive characterisation of coronary lesion morphology and composition by multislice CT: first results in comparison with intracoronary ultrasoundEur Radiol1116071611PubMedGoogle Scholar
  10. 10.
    Achenbach, S, Giesler, T, Ropers, D.,  et al. 2001Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomographyCirculation10325352538PubMedGoogle Scholar
  11. 11.
    Ferencik, M, Moselewski, F, Ropers, D.,  et al. 2003Quantitative parameters of image quality in multidetector spiral computed tomographic coronary imaging with submillimeter collimationAm J Cardiol9212571262PubMedGoogle Scholar
  12. 12 .
    Mollet, NR, Cademartiri, F, Nieman, K.,  et al. 2004Multislice spiral computed tomography coronary angiography in patients with stable angina pectorisJ Am Coll Cardiol4322652270PubMedGoogle Scholar
  13. 13.
    Achenbach, S. 2004Detection of coronary stenoses by multidetector computed tomography: it’s all about resolutionJ Am Coll Cardiol43840841PubMedGoogle Scholar
  14. 14.
    Achenbach, S, Giesler, T, Ropers, D.,  et al. 2003Comparison of image quality in contrast-enhanced coronary-artery visualization by electron beam tomography and retrospectively electrocardiogram-gated multislice spiral computed tomographyInvest Radiol38119128CrossRefPubMedGoogle Scholar
  15. 15.
    Achenbach, S, Moselewski, F, Ropers, D.,  et al. 2004Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasoundCirculation1091417PubMedGoogle Scholar
  16. 16.
    Schroeder, S, Kopp, AF, Baumbach, A.,  et al. 2001Noninvasive detection of coronary lesions by multislice computed tomography: results of the New Age pilot trialCatheter Cardiovasc Interv53352358PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Axel Kuettner
    • 1
  • Christof Burgstahler
    • 2
  • Torsten Beck
    • 2
  • Tanja Drosch
    • 1
  • Andreas F. Kopp
    • 1
  • Martin Heuschmid
    • 1
  • Claus D. Claussen
    • 1
  • Stephen Schroeder
    • 2
  1. 1.Department of Diagnostic RadiologyEberhard-Karls-UniversityTuebingenGermany
  2. 2.Department of Internal Medicine, Division of CardiologyEberhard-Karls-University TuebingenTuebingenGermany

Personalised recommendations