Skip to main content
Log in

Nonlinear Switching Control of the CO Oxidation Reaction Rate in Hydrogen Production

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

Catalytic CO oxidation on platinum group metals can exhibit nonlinear behaviors like catastrophe, bistability, and hysteresis, which are indicative of self-organizing processes occurring in the course of the oxidation reaction. As a result, the system demonstrates a multi-branch nonlinear input/output relationship for which the output value depends not only on the instantaneous input values, but also on the history of operations. Traditional linear control approaches may cause unstable operation in the CO oxidation reaction. In this paper, a nonlinear control strategy is proposed to solve the control problem. The control strategy incorporates a PI controller and a switching control strategy by which the control system can maintain a high regulating performance while preventing unstable operation. It may be applied to control operations in industrial processes of catalytic CO oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Y. Suchorski, J. Beben, E. W. James, J. W. Evans, and IL Imbihl, “Fluctuation-induced transitions in a bistable surface reaction: catalytic CO oxidation on a Pt field emitter tip,” Phys. Rev. Lett, 82(9), 1907- 1910 (1999).

    Article  CAS  Google Scholar 

  2. L. Dajiang and J.W. Evans, “Symmetry-breaking and percolation transitions in a surface reaction model with superlattice ordering,” Phys. Rev. Len.. 84(5), 955-958 (2000).

    Article  Google Scholar 

  3. N. Pavlenko, J.W. Evans, L. Dajiang. and R. Imbihl, “Catalytic CO oxidation on nanoscale Pt facets: Effect of interfacet CO diffusion on bifurcation and fluctuation behavior,”Phys. Rev. E, 65, 0161211(2001).

    Article  CAS  Google Scholar 

  4. D. Hua and Y. Ma, “Hysteresis phenomena in CO catalytic oxidation system in the presence of inhomogeneities of the catalyst surface,” Phys. Rev. E, 66, 66103 (2002).

    Article  CAS  Google Scholar 

  5. M. Bar, C. Zulicke, M. Eiswirth, and G Ertl, “Theoretical modeling of spatiotemporal self-organization in a surface catalyzed reaction exhibiting bistable kinetics,”J. Chem. Phys., 96, 8595-8604 (1992).

    Article  Google Scholar 

  6. M. S. Monza, A. Hammoudeh, J. Loboda-Cackovic, and J. H. Block, “The CO-oxidation on Pd-rich surfaces of PdCu (110): hysteresis in reaction rates,” J. Mot. Carat. A: Chem., 96, 271-276 (1995).

    Google Scholar 

  7. L. Dajiang and J.W. Evans, “Chemical diffusion of CO in mixed CO+O adlayers and reaction-front propagation in CO oxidation on Pd (100),” J. Chem. Phys., 125, 54709 (2006).

    Article  CAS  Google Scholar 

  8. N. Pavlenko, J. W. Evans, D. J. Liu, and R. Imbihl, “Catalytic CO oxidation on nanoscale Pt facets: effect of interfacet CO diffusion on bifurcation and fluctuation behaviour,” Plys. Rev. E, 65, 16121 (2002).

    CAS  Google Scholar 

  9. S. Rarpitschka, S. Wehner, and J. Küppers, “Reaction hysteresis of the CO+O → CO2 reaction on palladium(111),” J. Chem. Phys., 130, 54706 (2009).

    Article  CAS  Google Scholar 

  10. R. Imbihl, “fluctuations in catalytic surface reactions,” New J. Phys., 62, 621-627 (2003).

    Google Scholar 

  11. H. Yumino, W. Stefan, R. Jurgen, and H. R. Brand. “External noise imposed on the reaction-diffusion system CO+O2→ CO2 on Ir(111) surfaces: experiment and theory,” Phys. Rev. E, 69, 0216091 (2004).

    Google Scholar 

  12. A. Armaou and I. G Revrekidis, “Equation-free optimal switching policies for bistable reacting systems,” Int. J. Robust Nonlinear Control, 15, 713-726 (2005).

    Article  Google Scholar 

  13. M. Pineda, R. Imbihl, and L. Schimansky-Geier, “Effects of surface size on minimalistic stochastic models for the catalytic CO oxidation,” Physics: A, 389, 1178-1188 (2010).

    CAS  Google Scholar 

  14. M.S. Branicky, “Multiple Lyapunov functions and other analysis tools for switched and hybrid systems,” IEEE Trans. Autom. Control, 43(4), 475-482 (1998).

    Article  Google Scholar 

  15. M. Wang, J. Zhao, and M. G. Dimirovski, “Output tracking control of nonlinear switched cascade systems using a variable structure control method,” Int. J. Control, 83(2), 394-403 (2010).

    Article  Google Scholar 

  16. H. Ye, A.N. Michael, and L. Hou, “Stability theory for hybrid dynamic systems, “IEEE Trans. Autom. Control, 43(4), 461-474 (1998).

    Article  Google Scholar 

  17. H.Y. Li, Y.Z. Luo, and G.J. Tang, “Optimal multi-objective linearized impulsive rendezvous under uncertainty,” Acta Astronaut., 66(3), 439-445 (2010).

    Article  Google Scholar 

  18. P. Stewart, D. Gladwin, M. Parr, and J. Stewart, “Multi-objective evolutionary—fuzzy augmented flight control for an F16 aircraft,” Proc. Inst. Mech. Eng., Part G: J. Aerospace Eng., 224(3), 293-309 (2010).

    Article  Google Scholar 

  19. B. Niu, X. Zhao, X. Fan, and Y. Cheng, “A new control method for state-constrained nonlinear switched systems with application to chemical process,” Int. J. Control, 88(9), 1-8 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Sheng.

Additional information

Translated from khimiya i Tekhnologiya Topliv i Masel, No. 5, pp. 90-95, September — October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Cao, R. & Sheng, L. Nonlinear Switching Control of the CO Oxidation Reaction Rate in Hydrogen Production. Chem Technol Fuels Oils 55, 652–659 (2019). https://doi.org/10.1007/s10553-019-01078-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-019-01078-6

Keywords

Navigation