Skip to main content
Log in

The Effect of Thermochemical Factors on Fracturing Pressure in Shale Rock Characterized by Tensisle Strength Anisotropy

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

A Correction to this article was published on 01 January 2020

This article has been updated

Drilling mud characteristics affect the stress distribution around the borehole, while anisotropic tensile strength determines the fracture behavior of the formation, but the combined effect of these factors is rarely considered in the prediction of fracture pressure. In this work, tensile strength anisotropy of shale rock was analyzed based on the Brazilian disc test (BDT), and the corresponding anisotropic tensile criteria were reviewed and contrasted with experimental results. The N-Z (Nova – Zaninetti) criterion is adopted to describe tensile strength anisotropy of shale rock. Based on the stress distribution model and the N-Z criterion, a model of shale rock fracture under the combined action of thermal and chemical factors was constructed. The solution of the model shows that chemical and thermal factors have a different effect on pore pressure distribution around the borehole. The effect of sedimentary layers, tensile strength anisotropy, in-situ stress and pore pressure on equivalent density of fracture pressure (EDFP) was also investigated. It is shown that the EDFP decreases with increasing dip angle at a given strike of the bedding plane and reaches a minimum value when the strike of the bedding plane is along the direction of the minimum horizontal stress. The decrease in EDFP caused by tensile strength anisotropy reaches or exceeds 10% of the value calculated for isotropic conditions. The more pronounced the anisotropy of strength, the smaller the possible value of EDFP. The higher the ratio of horizontal stresses and pore pressure, the more significant the effect of anisotropy on EDFP. It is also notable that increasing the temperature of the wellbore can improve EDFP parameters and enlarge the SMDW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Change history

  • 19 March 2020

    To the article ���The Effect of Thermochemical Factors on Fracturing Pressure in Shale Rock Characterized by Tensisle Strength Anisotropy,��� by Yingjie Chen, Jianhong Fu, Yang Liu, and Feng Li, Vol. 55, No. 3, pp. 339-352, July, 2019

References

  1. Y. Feng and K. E. Gray, SPE Journal, 23, 205–223 (2018) (SPE 187945-PA).

  2. B. Aadnoy and R. Looyeh, Petroleum Rock Mechanics: Drilling Operations and Well Design, Gulf Professional Publishing, Oxford, UK (2011).

    Book  Google Scholar 

  3. Y. Feng, J. F. Jones, and K. E. Gray, SPE Drilling & Completion, 31(2), 134–144 (2016).

    Article  Google Scholar 

  4. Y. Feng, C. Arlanoglu, E. Podnos, et al., SPE Drilling & Completion, 30(1), 38–51 (2015).

    Article  Google Scholar 

  5. J. C. Zhang and S. X. Yin, Petrol. Sci., 14 (4), 720–730 (2017).

    Article  CAS  Google Scholar 

  6. M. K. Hubbert and D. G. Willis, AIME Petroleum Transactions, 210, 153–168 (1957).

    Article  Google Scholar 

  7. W. R. Matthews and J. Kelly, Oil and Gas Journal, 65(8), 92–106 (1967).

    Google Scholar 

  8. B. A. Eaton, J. Petrol. Technol., 21(10), 1353–1360 (1969).

    Article  Google Scholar 

  9. R. A. Anderson, D. S. Ingram, and A. M. Zanier, J. Petrol. Technol., 11, 1259–1268 (1973).

    Article  Google Scholar 

  10. R. Huang, Journal of the University of Petroleum, China, 9(4), 335–346 (1984).

  11. Z. P. Yang, B. He, L. Z. Xie, et al., Rock and Soil Mechanics, 36(12), 3447–3455 (2015).

    Google Scholar 

  12. J. Wang, L. Xie, H. Xie, et al., J. Nat. Gas Sci. Eng., 36, 1120–1129 (2016).

    Article  Google Scholar 

  13. P. Hou, F. Gao, Y. G. Yang, et al., Chin. J. Geotech. Eng., 38, 930–939 (2016).

    Google Scholar 

  14. T. Ma, N. Peng, Z. Zhu, et al., Review and New Insights. Energies, 11(2), 304 (2018).

    Google Scholar 

  15. T. Ma, B. Wu, J. Fu, et al., J. Nat. Gas Sci. Eng., 38, 485–503 (2017).

    Article  Google Scholar 

  16. T. Ma, Q. B. Zhang, P. Chen, et al., J. Petrol. Sci. Eng., 149, 393–408 (2017).

    Article  CAS  Google Scholar 

  17. Y. Wang and E. Papamichos, Water Resour. Res., 30(12), 3375–3384 (2017).

    Article  Google Scholar 

  18. G. Chen, M. E. Chenevert, M. M. Sharma, et al., J. Petrol. Sci. Eng., 38(3–4), 167–176 (2003).

    Article  CAS  Google Scholar 

  19. G. Chen and R. T. Ewy, SPE Journal, 10(02), 121–129 (2005).

    Article  Google Scholar 

  20. V. Vishal, S. P. Pradhan, and T. N. Singh, Geotechnical and Geological Engineering, 29(6): 1127–1133 (2011).

    Article  Google Scholar 

  21. D. Li and L. N. Y. Wong, Rock Mech. Rock Eng., 46(2), 269–287 (2013).

    Article  Google Scholar 

  22. B. Wu, R. Chen, and K. Xia, Int. J. Rock Mech. Min., 80, 12–18 (2015).

    Article  Google Scholar 

  23. D. W. Hobbs, Int. J. Rock Mech. Min., 1(3), 385–396 (1964).

    Article  Google Scholar 

  24. R. Sierra, M. H. Tran, Y. N. Abousleiman, et al., “Woodford shale mechanical properties and the impacts of lithofacies,” In: 44thUS Rock Mechanics Symposium and 5thUS-Canada Rock Mechanics Symposium, American Rock Mechanics Association (2010).

  25. N. D. J. Simpson, “An analysis of tensile strength, fracture initiation and propagation in anisotropic rock (gas shale) using Brazilian tests quipped with high speed video and acoustic emission,” dissertation, Norwegian University of Science and Technology (2013).

  26. D. W. Hobbs, Int. J. Rock Mech. Min., 4(1), 115–127 (1967).

    Article  Google Scholar 

  27. K. Barron, Int. J. Rock Mech. Min., 8(6), 553–563 (1971).

    Article  Google Scholar 

  28. R. Nova and A. Zaninetti, Int. J. Rock Mech. Min., 27(4), 231–242 (1990).

    Article  Google Scholar 

  29. Y. K. Lee and S. Pietruszczak, Int. J. Rock Mech. Min., 79, 205–215 (2015).

    Article  Google Scholar 

  30. M. Kurashige, Int. J. Solids Struct., 25(9), 1039–1052 (1989).

    Article  Google Scholar 

  31. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., Clarendon Press, Oxford (1959).

    Google Scholar 

  32. M. Yu, M. E. Chenevert, and M. M. Sharma, J. Petrol. Sci. Eng., 38(3–4), 131–143 (2003).

    Article  CAS  Google Scholar 

  33. M. Chen, Y. Jin, and G. Zhang, Rock Mechanics of Petroleum Engineering, Science Press, Beijing, China (2008).

    Google Scholar 

  34. G. Chen, “A study of wellbore stability in shales including poroelastic, chemical, and thermal effects,” dissertation, The University of Texas at Austin (2001).

Download references

This work was financially supported by the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation of Southwest Petroleum University (grants Nos. G201604 and PLN201611) and the National Natural Science Foundation of China (grant No. 51604230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhong Fu.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 3, pp. 82 – 89, May – June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Fu, J., Liu, Y. et al. The Effect of Thermochemical Factors on Fracturing Pressure in Shale Rock Characterized by Tensisle Strength Anisotropy. Chem Technol Fuels Oils 55, 339–352 (2019). https://doi.org/10.1007/s10553-019-01037-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-019-01037-1

Keywords

Navigation