Skip to main content

Advertisement

Log in

Method for Isolating Asphaltenes from Petroleum by Their Precipitation from Supercritical Carbon Dioxide

  • METHODS OF ANALYSIS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

A study was carried out on the precipitation of heavy fractions and the isolation of asphaltenes from a petroleum sample using supercritical carbon dioxide (SC-CO2) as the antisolvent. The experiments were carried out in a laboratory supercritical fluid extraction device using a GAS (gas antisolvent) procedure at from 50 to 140°C and pressure from 10 to 30 MPa. We determined the effects of temperature and pressure as well as of the addition of a hydrocarbon diluent on the yields of the isolated fractions. The elemental and microelement composition was determined as well as the structural properties of the components isolated in the SC-CO2 medium at various temperatures. An increase in temperature at pressures above 20 MPa as well as the addition of small amounts of toluene to the starting petroleum sample gave greater isolation selectivity, greater concentration of asphaltenes in the precipitated fractions, and drier solid particles. In contrast to C7-asphaltenes, CO2-asphaltenes have lower aromaticity, polarity, and metal content. The proposed analytical method permits the isolation of asphaltenes in only a few hours, does not require large volumes of organic solvents, and yields asphaltenes in amounts sufficient for subsequent detailed study of their composition and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. C. Leyva, J. Ancheyta, C. Berrueco, et al., Fuel Processing Technology, 106, 734-738 (2013).

    Article  CAS  Google Scholar 

  2. P. Luo and Y. Gu, Fuel, 86, 1069-1078 (2007).

    Article  CAS  Google Scholar 

  3. R. G. Santos, W. Loh, A. C. Bannwart, et al., Brazilian Journal of Chemical Engineering, 31, 571-590 (2014).

    Article  Google Scholar 

  4. M. S. Rana, V. Samana, J. Ancheyta, et al., Fuel, 86, 1216-1231 (2007).

    Article  CAS  Google Scholar 

  5. P. Luo, X. Wang, and Y. Gu, Fluid Phase Equilibria, 291, 103-110 (2010).

    Article  CAS  Google Scholar 

  6. J. Ancheyta, G. Centeno, F. Trejo, et al., Energy & Fuels, 16, 1121-1127 (2002).

    Article  CAS  Google Scholar 

  7. H. Alboudwarej, J. Beck, W. Y. Svrcek, et al., Energy & Fuels, 16, 462-469 (2002).

    Article  CAS  Google Scholar 

  8. B. Eckermann and A. Vogelpohl, Chem. Eng. Technol., 13, 258-264 (1990).

    Article  CAS  Google Scholar 

  9. Z. Liu, G. Y. Yang, Y. Lu, et al., Journal of Supercritical Fluids, 16, 27-31 (1999).

    Article  Google Scholar 

  10. US Patent 0032340 Al.

  11. P. Zanganeh, H. Dashti, and S. Ayatollahi, Fuel, 160, 132-139 (2015).

    Article  CAS  Google Scholar 

  12. S. Soroush, B. Breure, T. W. de Loos, et al., Journal of Supercritical Fluids, 94, 59-64 (2014).

    Article  CAS  Google Scholar 

  13. T. F. Headen and E. S. Boek, Energy & Fuels, 25, 503-508 (2011).

    Article  CAS  Google Scholar 

  14. R. N. Magomedov, A. V. Pripakhaylo, and T. A. Maryutina, Journal of Supercritical Fluids, 119, 150 (2017).

    Article  CAS  Google Scholar 

  15. R. N. Cavalcanti and M. A. A. Meireles, in: J. Pawliszyn (editor), Comprehensive Sampling and Sample Preparation, Vol. 2, Elsevier, Amsterdam (2012), pp. 117-133.

    Chapter  Google Scholar 

  16. Thermophysical Properties for Carbon Dioxide, NIST Chemistry WebBook, SRD 69, URL: https://webbook.nist.gov/chemistry/fluid/

  17. D. Espinat, D. Fenistein, L. Bane, et al., Energy & Fuels, 18, 1243-1249 (2004).

    Article  CAS  Google Scholar 

  18. X. Wang and Y. Gu, Energy & Fuels, 25, 5232-5241 (2011).

    Article  CAS  Google Scholar 

  19. H. Ni, C. S. Hsu, P. Lee, et al., Fuel, 141, 74-81(2015).

    Article  CAS  Google Scholar 

  20. S. Rudyk, P. Spirov, and A. Tyrovolas, Journal of CO 2 Utilization, 24, 471-478 (2018).

  21. S. I. Andersen and J. G. Speight, Petroleum Science and Technology, 19, Nos. 1/2, 1-34 (2001).

    Article  CAS  Google Scholar 

  22. M. R. Yakubov, K. O. Sinyashin, G. R. Abilova, et al., Petroleum Chemistry, 57, No. 10, 849-854 (2017).

    Article  CAS  Google Scholar 

  23. G. Caumette, C.-P. Lienemann, I. Merdrignac, et al., J. Anal. At. Spectrom., 25, 1123-1129 (2010).

    Article  CAS  Google Scholar 

  24. E. Rogel, C. Ovalles, and M. E. Moir, Energy & Fuels, 23, 4515-4521 (2009).

    Article  CAS  Google Scholar 

Download references

This study was carried out with the support of the Russian Science Fund (Project No. 18-73-00345). The authors express their gratitude the Engineering Center of the Moscow Institute of Physics and Technology for permitting use of scientific equipment in the framework of the Agreement of Science and Technology Cooperation (March 2, 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pripakhaylo.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 3, pp. 49 – 56, May – June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magomedov, R.N., Pripakhaylo, A.V., Foteeva, L.S. et al. Method for Isolating Asphaltenes from Petroleum by Their Precipitation from Supercritical Carbon Dioxide. Chem Technol Fuels Oils 55, 287–298 (2019). https://doi.org/10.1007/s10553-019-01032-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-019-01032-6

Key words

Navigation