Skip to main content
Log in

Predicted Dependence of Gas—Liquid Diffusion Coefficient on Capillary Pressure in Porous Media

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

Theoretical and experimental studies of the change of diffusion coefficient in porous media are reported. Mathematical equations were derived for calculating the diffusion coefficient in oil and gas phases. Experiments were conducted by measuring the pressure decline in both a PVT-cell and a sample of actual core. The medium porosity was found to have a significant effect on the system pressure decline. The diffusion coefficient in the PVT-cell was two orders of magnitude greater than that in the core. The diffusion coefficient was studied as a function of rock permeability and porosity. It was found that the porosity was the main factor affecting the diffusion coefficient whereas the permeability could be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. A. T. Grogan and W. V. Pinczewski, J. Pet. Technol., 39, No. 5, 591-602 (1987).

    Article  CAS  Google Scholar 

  2. J. H. Saboorian, M. Dejam, and Z. J. Chen, in: SPE Heavy Oil Conference – Canada, June 10-12, 2014, Calgary, Alberta, Canada, SPE-170030-MS.

  3. M. R. Riazi, J. Pet. Sci. Eng., 14, No. 95, 235-250 (1996).

    Article  CAS  Google Scholar 

  4. H. H. Reamer and B. H. Sage, Ind. Eng. Chem., 48, No. 2, 275-281 (1956).

    Article  CAS  Google Scholar 

  5. H. H. Reamer and B. H. Sage, Ind. Eng. Chem., 48, No. 2, 275-288 (1956).

    Article  CAS  Google Scholar 

  6. H. H. Reamer and B. H. Sage, J. Chem. Eng. Data, 4, No. 4, 296-300 (1959).

    Article  CAS  Google Scholar 

  7. T. A. Renner, SPE Reservoir Eng., 3, No. 2, 517-523 (1988).

    Article  CAS  Google Scholar 

  8. Y. P. Zhang, C. L. Hyndman, and B. B. Maini, J. Pet. Sci. Eng., 25, 37-47 (2000).

    Google Scholar 

  9. M. Jamialahmadi, M. Emadi, and H. Muller-Steinhagen, J. Pet. Sci. Eng., 53, 47-60 (2006).

    CAS  Google Scholar 

  10. S. R. Etminan, B. B. Maini, Z. Chen, et al., Energy Fuels, 24, No. 6, 533-549 (2010).

    Article  CAS  Google Scholar 

  11. P. Go, Z. Wang, P. Shen, et al., Ind. Eng. Chem. Res., 48, No. 19, 9023-9027 (2009).

    Article  Google Scholar 

  12. E. Behzadfar and S. G. Hatzikiriakos, Energy Fuels, 28, No. 2, 1304-1311 (2014).

    Article  CAS  Google Scholar 

  13. S. R. Upreti ahd A. K. Mehrotra, Ind. Eng. Chem. Res., 39, No. 4, 1080-1087 (2000).

  14. S. R. Upreti and A. K. Mehrotra, Can. J. Chem. Eng., 80, No. 1, 116-125 (2002).

    Article  CAS  Google Scholar 

  15. F. Civan and M. L. Rasmussen, in: SPE/DOE 13th Improved Oil Recovery Symposium, Tulsa, Oklahoma, Apr. 13-17, 2002, SPE-75135-MS.

  16. F. Civan and M. L. Rasmussen, in: SPE Annual Technical Conference and Exhibition, Denver, Colorado, Oct. 5-8, 2003, SPE-84072-MS.

  17. Z. Li, M. Dong, and S. Li, J. Porous Media, 9, No. 5, 445-461 (2006).

    Article  CAS  Google Scholar 

  18. K. P. Saripalli, R. J. Serne, P. D. Meyer, and B. P. McGrail, Groundwater, 40, No. 4, 346-352 (2002).

    Article  CAS  Google Scholar 

  19. Z. Li and M. Dong, Ind. Eng. Chem. Res., 48, No. 20, 9307-9317 (2009).

    Article  CAS  Google Scholar 

  20. Z. Li and M. Dong, Ind. Eng. Chem. Res., 49, No. 13, 6231-6237 (2010).

    Article  CAS  Google Scholar 

  21. a) R. Islas-Juarez, V. F. Samanego, E. Luna, et al.; b) B. Albers, ZAMM, J. Appl. Math. Mech., Z. Angew. Math. Mech., 81, No. 10, 683-690 (2001).

  22. D. Unatrakarn, K. Asghari, and J. Condor, Energy Procedia, 4, No. 1, 2170-2177 (2011).

    Article  CAS  Google Scholar 

  23. A. A. Garrouch, L. Ali, and F. Qasem, Ind. Eng. Chem. Res., 40, No. 20, 4363-4369 (2001).

    Article  CAS  Google Scholar 

  24. G. R. Tick, M. M. Colleen, and I. Yolcubal, Water, Air, Soil Pollut., 184, No. 1-4, 355-362 (2007).

    Article  CAS  Google Scholar 

  25. Y. He, Y. L. Zhang, and N. S. Wu, Pet. Geol. Xinjiang, 25, No. 6, 647-649 (2004).

    Google Scholar 

  26. E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, Cambridge, 1997,

    Google Scholar 

Download references

Acknowledgments

The work was sponsored by the National Natural Science Foundation of China under the program “Theory and molecular dynamics study on CO2-crude oil non-equilibrium diffusion considering capillary pressure and adsorption” (No. 51374179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanmin Tu.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 1, pp. 35 – 41, January – February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, P., Tu, H., Ye, A. et al. Predicted Dependence of Gas—Liquid Diffusion Coefficient on Capillary Pressure in Porous Media. Chem Technol Fuels Oils 53, 54–67 (2017). https://doi.org/10.1007/s10553-017-0781-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-017-0781-y

Keywords

Navigation