Skip to main content

Advertisement

Log in

Lipids of Basidial Fungi as Feedstock for Biodiesel Fuel Production

  • REVIEWS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

The scientific literature on the influence of various factors on the lipid content and composition in biomass of basidial fungi was reviewed. The influence of carbon and nitrogen sources, C:N ratio, temperature, and pH of the medium on the biomass yield and lipid fatty-acid content and composition was analyzed for various basidial fungi. The most promising substrate for biodiesel fuel production was vegetable residues and/or waste liquors. The culture conditions should be chosen with a view to maximizing the biomass yield and monounsaturated fatty-acid content in the fungal lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Here and further, of the air-dried biomass.

References

  1. S. Hama and A. Kondo, Bioresour. Technol., 135, 386–395 (2013).

    Article  CAS  Google Scholar 

  2. B. R. Moser, “Biodiesel production, properties, and feedstocks,” in: Biofuels, Springer, New York, 2011, pp. 285–347.

  3. A. Robles-Medina, P. A. Gonzalez-Moreno, L. Esteban-Cerdan, et al., Biotechnol. Adv., 27, 398–408 (2009).

    Article  CAS  Google Scholar 

  4. M. Rossi, A. Amaretti, S. Raimondi, et al., in: Biodiesel – Feedstocks and Processing Technologies, M. Stoytcheva and G. Montero (eds.), InTech, Rijeka, Croatia, 2011, 1, pp. 71–92.

  5. V. G. Babitskaya, T. V. Chernook, V. V. Shcherba, et al., Tr. Belorus. Gos. Univ., 4, Part 1, 2009, Chap. 5. Fungal Biotechnologies and Their Use in Medicine, pp. 142–144.

  6. K. Pedneault, P. Angers, A. Gosselin, et al., Mycol. Res., 112, 1428–1434 (2008).

    Article  CAS  Google Scholar 

  7. K. Pedneault, P. Angers, A. Gosselin, et al., Mycol. Res., 110, 1179–1183 (2006).

    Article  CAS  Google Scholar 

  8. B. Ribeiro, P. G. de Pinho, P. B. Andrade, et al., Microchem. J., 93, 29–35 (2009).

    Article  CAS  Google Scholar 

  9. M. Ozturk, M. E. Duru, S. Kivrak, et al., Food Chem. Toxicol., 49, 1353–1360 (2011).

    Article  Google Scholar 

  10. K. J. Lee, I. J. Yun, K. H. Kim, et al., J. Food Compos. Anal., 24, 175–178 (2011).

    Article  CAS  Google Scholar 

  11. S. Kavishree, J. Hemavathy, B. R. Lokesh, et al., Food Chem., 106, 597–602 (2008).

    Article  CAS  Google Scholar 

  12. V. J. Sinanoglou, P. Zoumpoulakis, G. Heropoulos, et al., J. Food Sci. Technol., 52, 1–9 (2014).

    Google Scholar 

  13. H. H. Dogan, J. Food Compos. Anal., 31, 87–93 (2013).

    Article  CAS  Google Scholar 

  14. L. Barros, P. Baptista, D. M. Correia, et al., Food Chem., 105, 140–145 (2007).

    Article  CAS  Google Scholar 

  15. T. A. Pedersen, Acta Chem. Scand., 15, 651–662 (1961).

    Article  CAS  Google Scholar 

  16. Q. Wang, F. J. Guo, Y. J. Rong, et al., Renewable Energy, 46, 164–168 (2012).

    Article  CAS  Google Scholar 

  17. X. Yu. Y. Zheng, K. M. Dorgan, et al., Bioresour. Technol., 102, 6134–6140 (2011).

    Article  Google Scholar 

  18. R. S. Farag, F. A. Khalil, H. Salem, et al., J. Am. Oil Chem. Soc., 60, 795–800 (1983).

    Article  CAS  Google Scholar 

  19. Y. Gonzalez-Garcia, R. Hernandez, G. Zhang, et al., Environ. Prog. Sustainable Energy, 32, 69–74 (2013).

    Article  CAS  Google Scholar 

  20. D. A. Kadimaliev, O. S. Nadezhina, N. A. Atykyan, et al., Microbiology, 75, 563–567 (2006).

    Article  CAS  Google Scholar 

  21. E. R. Easterling, W. T. French, R. Hernandez, et al., Bioresour. Technol., 100, 356–361 (2009).

    Article  CAS  Google Scholar 

  22. V. W. Johnson, M. Singh, V. S. Saini, et al., J. Ind. Microbiol., 14, 1–4 (1995).

    Article  CAS  Google Scholar 

  23. C. Dai, J. Tao, F. Xie, et al., Afr. J. Biotechnol., 6, 2130–2134 (2007).

    CAS  Google Scholar 

  24. L. Y. Zhu, M. H. Zong, and H. Wu, Bioresour. Technol., 99, 7881–7885 (2008).

    Article  CAS  Google Scholar 

  25. C. T. Evans and C. Ratledge, J. Gen. Microbiol., 130, 1693–1704 (1984).

    CAS  Google Scholar 

  26. P. Diamantopoulou, S. Papanikolaou, M. Komaitis, et al., Bioprocess Biosyst. Eng., 37, 1385–1400 (2014).

    Article  CAS  Google Scholar 

  27. P. Diamantopoulou, S. Papanikolaou, M. Kapoti, et al., Appl. Biochem. Biotechnol., 167, 536–551 (2012).

    Article  CAS  Google Scholar 

  28. P. Diamantopoulou, S. Papanikolaou, E. Katsarou, et al., Appl. Biochem. Biotechnol., 167, 1890–1906 (2012).

    Article  CAS  Google Scholar 

  29. Y. Tang, Y. Y. Li, H. M. Li, et al., J. Agric. Food Chem., 59, 4736–4742 (2011).

    Article  CAS  Google Scholar 

  30. S. S. Tchakouteu, A. Chatzifragkou, O. Kalantzi, et al., Eur. J. Lipid Sci. Technol., 117, 657–672 (2014).

    Article  Google Scholar 

  31. F. R. Smiderle, L. M. Olsen, A. C. Ruthes, et al., Carbohydr. Polym., 87, 368–376 (2012).

    Article  CAS  Google Scholar 

  32. Q. Fei, H. N. Chang, and L. Shang, Biotechnol. Bioprocess Eng., 16, 482–487 (2011).

    Article  CAS  Google Scholar 

  33. A. A. Ivashechkin, Y. E. Sergeeva, V. V. Lunin, et al., Appl. Biochem. Microbiol., 50, 286–291 (2014).

    Article  CAS  Google Scholar 

  34. A. Gutierrez, C. Jose, M. J. Martinez-Inigo, et al., Appl. Environ. Microbiol., 68, 1344–1350 (2002).

    Article  CAS  Google Scholar 

  35. Y. Liu, C. M. J. Koh, and L. Ji, Bioresour. Technol., 102, 3927–3933 (2011).

    Article  CAS  Google Scholar 

  36. M. M. Rashad, N. M. Abdou, A. E. Mahmoud, et al., Aust. J. Basic Appl. Sci., 3, 3352–3360 (2009).

    CAS  Google Scholar 

  37. K. Kahlos, Acta Biotechnol., 14, 169–179 (1994).

    Article  CAS  Google Scholar 

  38. T. Braunwald, L. Schwemmlein, S. Graeff-Honninger, et al., Appl. Microbiol. Biotechnol., 97, 6581–6588 (2013).

    Article  CAS  Google Scholar 

  39. P. Kraisintu, W. Yongmanitchai, S. Limtong, et al., Kasetsart J.: Nat. Sci., 44, 436–445 (2010).

    CAS  Google Scholar 

  40. N. G. Nair, C. H. Song, J. Y. Jiang, et al., Ann. Appl. Biol., 114, 167–176 (1989).

    Article  CAS  Google Scholar 

  41. A. Akpinar-Bayizit, Int. J. Chem. Eng. Appl., 5, 409–414 (2014).

    CAS  Google Scholar 

  42. L. A. Bespalova, O. E. Makarov, L. P. Antonyuk, et al., Appl. Biochem. Microbiol., 38, 349–354 (2002).

    Article  CAS  Google Scholar 

  43. K. Pedneault, P. Angers, T. J. Avis, et al., Mycol. Res., 111, 1228–1234 (2007).

    Article  CAS  Google Scholar 

  44. V. M. Tereshina and A. S. Memorskaya, Microbiology, 74, 279–283 (2005).

    Article  CAS  Google Scholar 

  45. D. N. Olennikov, S. V. Agafonova, T. A. Penzina, et al., Rec. Nat. Prod., 8, 184–188 (2014).

    Google Scholar 

  46. V. G. Babitskaya, V. V. Shcherba, T. A. Puchkova, et al., Usp. Med. Mikol., IX, 142–144 (2007).

  47. A. F. Tkachenko, O. A. Tigunova, and S. M. Shulga, Cytol. Genet., 47, 343–348 (2013).

    Article  Google Scholar 

  48. L. M. Papaspyridi, V. J. Sinanoglou, I. F. Strati, et al., Acta Aliment., 42, 328–337 (2013).

    Article  CAS  Google Scholar 

  49. H. Sakai and S. Kajiwara, Lipids, 39, 67–73 (2004).

    Article  CAS  Google Scholar 

  50. G. Knothe, Fuel Process. Technol., 88, 669–677 (2007).

    Article  CAS  Google Scholar 

  51. ASTM D 6751. Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels.

  52. S. D. Varfolomeev, E. N. Efremenko, and L. P. Krylova, Usp. Khim., 79, 544–564 (2010).

    Article  Google Scholar 

  53. B. D. Ribeiro, A. M. D. Castro, M. A. Z. Coelho, et al., Enzyme Res., 2011, 1–16 (2011).

    Google Scholar 

  54. J. A. Takahashi and S. A. Carvalho, Current Research. Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, Formatex, 2010, pp. 1126–1135.

  55. A. Hernandez-Almanza, J. C. Montanez, M. A. Aguilar-Gonzalez, et al., Food Biosci., 5, 64–72 (2014).

    Article  CAS  Google Scholar 

  56. L. Robles-Hernandez, A. C. Gonzalez-Franco, J. M. Soto-Parra, et al., Tecnociencia Chihuahua, 2, 95–107 (2008).

    Google Scholar 

Download references

Acknowledgments

The work was sponsored by the RF Ministry of Education and Science. Authors from Gubkin RSUOG were supported under State Task No. 13.74.2014/K; from the Faculty of Chemistry, Lomonosov MSU, under FTP Research and Development Priorities of the Russian Science and Technology Complex for 2014–2020 (unique project identifier RFMEFI60714X0074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Al’myasheva.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 4, pp. 46 – 51, July – August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al’myasheva, N.R., Sharipova, D.A., Barkov, A.V. et al. Lipids of Basidial Fungi as Feedstock for Biodiesel Fuel Production. Chem Technol Fuels Oils 51, 411–421 (2015). https://doi.org/10.1007/s10553-015-0619-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-015-0619-4

Keywords

Navigation