Advertisement

Chemistry and Technology of Fuels and Oils

, Volume 51, Issue 4, pp 411–421 | Cite as

Lipids of Basidial Fungi as Feedstock for Biodiesel Fuel Production

  • N. R. Al’myasheva
  • D. A. Sharipova
  • A. V. Barkov
  • E. A. Karakhanov
  • A. B. Kulikov
  • A. L. Maksimov
  • V. A. Vinokurov
REVIEWS

The scientific literature on the influence of various factors on the lipid content and composition in biomass of basidial fungi was reviewed. The influence of carbon and nitrogen sources, C:N ratio, temperature, and pH of the medium on the biomass yield and lipid fatty-acid content and composition was analyzed for various basidial fungi. The most promising substrate for biodiesel fuel production was vegetable residues and/or waste liquors. The culture conditions should be chosen with a view to maximizing the biomass yield and monounsaturated fatty-acid content in the fungal lipids.

Keywords

lipids basidial fungi biodiesel fuel 

Notes

Acknowledgments

The work was sponsored by the RF Ministry of Education and Science. Authors from Gubkin RSUOG were supported under State Task No. 13.74.2014/K; from the Faculty of Chemistry, Lomonosov MSU, under FTP Research and Development Priorities of the Russian Science and Technology Complex for 2014–2020 (unique project identifier RFMEFI60714X0074).

References

  1. 1.
    S. Hama and A. Kondo, Bioresour. Technol., 135, 386–395 (2013).CrossRefGoogle Scholar
  2. 2.
    B. R. Moser, “Biodiesel production, properties, and feedstocks,” in: Biofuels, Springer, New York, 2011, pp. 285–347.Google Scholar
  3. 3.
    A. Robles-Medina, P. A. Gonzalez-Moreno, L. Esteban-Cerdan, et al., Biotechnol. Adv., 27, 398–408 (2009).CrossRefGoogle Scholar
  4. 4.
    M. Rossi, A. Amaretti, S. Raimondi, et al., in: Biodiesel – Feedstocks and Processing Technologies, M. Stoytcheva and G. Montero (eds.), InTech, Rijeka, Croatia, 2011, 1, pp. 71–92.Google Scholar
  5. 5.
    V. G. Babitskaya, T. V. Chernook, V. V. Shcherba, et al., Tr. Belorus. Gos. Univ., 4, Part 1, 2009, Chap. 5. Fungal Biotechnologies and Their Use in Medicine, pp. 142–144.Google Scholar
  6. 6.
    K. Pedneault, P. Angers, A. Gosselin, et al., Mycol. Res., 112, 1428–1434 (2008).CrossRefGoogle Scholar
  7. 7.
    K. Pedneault, P. Angers, A. Gosselin, et al., Mycol. Res., 110, 1179–1183 (2006).CrossRefGoogle Scholar
  8. 8.
    B. Ribeiro, P. G. de Pinho, P. B. Andrade, et al., Microchem. J., 93, 29–35 (2009).CrossRefGoogle Scholar
  9. 9.
    M. Ozturk, M. E. Duru, S. Kivrak, et al., Food Chem. Toxicol., 49, 1353–1360 (2011).CrossRefGoogle Scholar
  10. 10.
    K. J. Lee, I. J. Yun, K. H. Kim, et al., J. Food Compos. Anal., 24, 175–178 (2011).CrossRefGoogle Scholar
  11. 11.
    S. Kavishree, J. Hemavathy, B. R. Lokesh, et al., Food Chem., 106, 597–602 (2008).CrossRefGoogle Scholar
  12. 12.
    V. J. Sinanoglou, P. Zoumpoulakis, G. Heropoulos, et al., J. Food Sci. Technol., 52, 1–9 (2014).Google Scholar
  13. 13.
    H. H. Dogan, J. Food Compos. Anal., 31, 87–93 (2013).CrossRefGoogle Scholar
  14. 14.
    L. Barros, P. Baptista, D. M. Correia, et al., Food Chem., 105, 140–145 (2007).CrossRefGoogle Scholar
  15. 15.
    T. A. Pedersen, Acta Chem. Scand., 15, 651–662 (1961).CrossRefGoogle Scholar
  16. 16.
    Q. Wang, F. J. Guo, Y. J. Rong, et al., Renewable Energy, 46, 164–168 (2012).CrossRefGoogle Scholar
  17. 17.
    X. Yu. Y. Zheng, K. M. Dorgan, et al., Bioresour. Technol., 102, 6134–6140 (2011).CrossRefGoogle Scholar
  18. 18.
    R. S. Farag, F. A. Khalil, H. Salem, et al., J. Am. Oil Chem. Soc., 60, 795–800 (1983).CrossRefGoogle Scholar
  19. 19.
    Y. Gonzalez-Garcia, R. Hernandez, G. Zhang, et al., Environ. Prog. Sustainable Energy, 32, 69–74 (2013).CrossRefGoogle Scholar
  20. 20.
    D. A. Kadimaliev, O. S. Nadezhina, N. A. Atykyan, et al., Microbiology, 75, 563–567 (2006).CrossRefGoogle Scholar
  21. 21.
    E. R. Easterling, W. T. French, R. Hernandez, et al., Bioresour. Technol., 100, 356–361 (2009).CrossRefGoogle Scholar
  22. 22.
    V. W. Johnson, M. Singh, V. S. Saini, et al., J. Ind. Microbiol., 14, 1–4 (1995).CrossRefGoogle Scholar
  23. 23.
    C. Dai, J. Tao, F. Xie, et al., Afr. J. Biotechnol., 6, 2130–2134 (2007).Google Scholar
  24. 24.
    L. Y. Zhu, M. H. Zong, and H. Wu, Bioresour. Technol., 99, 7881–7885 (2008).CrossRefGoogle Scholar
  25. 25.
    C. T. Evans and C. Ratledge, J. Gen. Microbiol., 130, 1693–1704 (1984).Google Scholar
  26. 26.
    P. Diamantopoulou, S. Papanikolaou, M. Komaitis, et al., Bioprocess Biosyst. Eng., 37, 1385–1400 (2014).CrossRefGoogle Scholar
  27. 27.
    P. Diamantopoulou, S. Papanikolaou, M. Kapoti, et al., Appl. Biochem. Biotechnol., 167, 536–551 (2012).CrossRefGoogle Scholar
  28. 28.
    P. Diamantopoulou, S. Papanikolaou, E. Katsarou, et al., Appl. Biochem. Biotechnol., 167, 1890–1906 (2012).CrossRefGoogle Scholar
  29. 29.
    Y. Tang, Y. Y. Li, H. M. Li, et al., J. Agric. Food Chem., 59, 4736–4742 (2011).CrossRefGoogle Scholar
  30. 30.
    S. S. Tchakouteu, A. Chatzifragkou, O. Kalantzi, et al., Eur. J. Lipid Sci. Technol., 117, 657–672 (2014).CrossRefGoogle Scholar
  31. 31.
    F. R. Smiderle, L. M. Olsen, A. C. Ruthes, et al., Carbohydr. Polym., 87, 368–376 (2012).CrossRefGoogle Scholar
  32. 32.
    Q. Fei, H. N. Chang, and L. Shang, Biotechnol. Bioprocess Eng., 16, 482–487 (2011).CrossRefGoogle Scholar
  33. 33.
    A. A. Ivashechkin, Y. E. Sergeeva, V. V. Lunin, et al., Appl. Biochem. Microbiol., 50, 286–291 (2014).CrossRefGoogle Scholar
  34. 34.
    A. Gutierrez, C. Jose, M. J. Martinez-Inigo, et al., Appl. Environ. Microbiol., 68, 1344–1350 (2002).CrossRefGoogle Scholar
  35. 35.
    Y. Liu, C. M. J. Koh, and L. Ji, Bioresour. Technol., 102, 3927–3933 (2011).CrossRefGoogle Scholar
  36. 36.
    M. M. Rashad, N. M. Abdou, A. E. Mahmoud, et al., Aust. J. Basic Appl. Sci., 3, 3352–3360 (2009).Google Scholar
  37. 37.
    K. Kahlos, Acta Biotechnol., 14, 169–179 (1994).CrossRefGoogle Scholar
  38. 38.
    T. Braunwald, L. Schwemmlein, S. Graeff-Honninger, et al., Appl. Microbiol. Biotechnol., 97, 6581–6588 (2013).CrossRefGoogle Scholar
  39. 39.
    P. Kraisintu, W. Yongmanitchai, S. Limtong, et al., Kasetsart J.: Nat. Sci., 44, 436–445 (2010).Google Scholar
  40. 40.
    N. G. Nair, C. H. Song, J. Y. Jiang, et al., Ann. Appl. Biol., 114, 167–176 (1989).CrossRefGoogle Scholar
  41. 41.
    A. Akpinar-Bayizit, Int. J. Chem. Eng. Appl., 5, 409–414 (2014).Google Scholar
  42. 42.
    L. A. Bespalova, O. E. Makarov, L. P. Antonyuk, et al., Appl. Biochem. Microbiol., 38, 349–354 (2002).CrossRefGoogle Scholar
  43. 43.
    K. Pedneault, P. Angers, T. J. Avis, et al., Mycol. Res., 111, 1228–1234 (2007).CrossRefGoogle Scholar
  44. 44.
    V. M. Tereshina and A. S. Memorskaya, Microbiology, 74, 279–283 (2005).CrossRefGoogle Scholar
  45. 45.
    D. N. Olennikov, S. V. Agafonova, T. A. Penzina, et al., Rec. Nat. Prod., 8, 184–188 (2014).Google Scholar
  46. 46.
    V. G. Babitskaya, V. V. Shcherba, T. A. Puchkova, et al., Usp. Med. Mikol., IX, 142–144 (2007).Google Scholar
  47. 47.
    A. F. Tkachenko, O. A. Tigunova, and S. M. Shulga, Cytol. Genet., 47, 343–348 (2013).CrossRefGoogle Scholar
  48. 48.
    L. M. Papaspyridi, V. J. Sinanoglou, I. F. Strati, et al., Acta Aliment., 42, 328–337 (2013).CrossRefGoogle Scholar
  49. 49.
    H. Sakai and S. Kajiwara, Lipids, 39, 67–73 (2004).CrossRefGoogle Scholar
  50. 50.
    G. Knothe, Fuel Process. Technol., 88, 669–677 (2007).CrossRefGoogle Scholar
  51. 51.
    ASTM D 6751. Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels.Google Scholar
  52. 52.
    S. D. Varfolomeev, E. N. Efremenko, and L. P. Krylova, Usp. Khim., 79, 544–564 (2010).CrossRefGoogle Scholar
  53. 53.
    B. D. Ribeiro, A. M. D. Castro, M. A. Z. Coelho, et al., Enzyme Res., 2011, 1–16 (2011).Google Scholar
  54. 54.
    J. A. Takahashi and S. A. Carvalho, Current Research. Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, Formatex, 2010, pp. 1126–1135.Google Scholar
  55. 55.
    A. Hernandez-Almanza, J. C. Montanez, M. A. Aguilar-Gonzalez, et al., Food Biosci., 5, 64–72 (2014).CrossRefGoogle Scholar
  56. 56.
    L. Robles-Hernandez, A. C. Gonzalez-Franco, J. M. Soto-Parra, et al., Tecnociencia Chihuahua, 2, 95–107 (2008).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • N. R. Al’myasheva
    • 1
  • D. A. Sharipova
    • 1
  • A. V. Barkov
    • 1
  • E. A. Karakhanov
    • 2
  • A. B. Kulikov
    • 3
  • A. L. Maksimov
    • 2
    • 3
  • V. A. Vinokurov
    • 1
  1. 1.I. M. Gubkin Russian State University of Oil and GasMoscowRussia
  2. 2.M. V. Lomonosov Moscow State UniversityMoscowRussia
  3. 3.A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations