Chemistry and Technology of Fuels and Oils

, Volume 51, Issue 2, pp 207–221 | Cite as

Influence of Coal-Seam Water on Coalbed Methane Production: A Review

  • Jinxuan Han
  • Zhaozhong Yang
  • Xiaogang Li
  • Jian Zhang

We present a comprehensive overview of the influence of water on coalbed methane production. The influence of water on coalbed methane production is associated with adsorption of water in pores, capillary condensation, micropore filling, adsorption hysteresis and its effect on methane diffusivity, coal swelling due to adsorption of water and a corresponding change in methane permeability, pore saturation by water (water imbibition into pores), and gas–water two-phase flow in the cleats. We consider methods for reducing the negative impact of water on coalbed methane production: carbon dioxide injection and microwave technology. We identify promising areas of study.

Key words

coalbed methane production water adsorption dewatering carbon dioxide injection microwave technology 


This work was done with the support of the key national project in the area of science and technology (2011ZX05042-002-001), the special fund of the central government supporting development of regional universities and the open fund of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (PLN1208).


  1. 1.
    D. Chen, Z. J. Pan, J. S. Liu, and L. D. Connell, “An improved relative permeability model for coal reservoirs,” International Journal of Coal Geology, 109–110, 45–57 (2013).Google Scholar
  2. 2.
    J. F. Unsworth, C. S. Fowler, A. Heard, and V. L. Weldon, “Moisture in coal: 1. Differentiation between forms of moisture by n.m.r. and attenuation techniques,” Fuel, 67, No. 8, 1111–1119 (1988).CrossRefGoogle Scholar
  3. 3.
    E. Zimmermann, and C. Niemann-Delius, “Microwave beneficiation of brown coal,” Górnictwo I Geoinzynieria, 31, No. 2, 627–633 (2007).Google Scholar
  4. 4.
    D. Chen, Z. J. Pan, J. S. Liu, and L. D. Connell, “Modeling and simulation of moisture effect on gas storage and transport in coal seams,” Energy & Fuels, 26, No. 3, 1695–1706 (2012.).CrossRefGoogle Scholar
  5. 5.
    N. S. Kaveh, E. S. Rudolph, K. A. Wolf, and S. N. Ashrafizadeh, “Wettability determination by contact angle measurements: hvbB coal-water system with injection of synthetic flue gas and CO2,” Journal of Colloid and Interface Science, 364, No. 1, 237–247 (2011).CrossRefGoogle Scholar
  6. 6.
    R. Sakurovs and S. Lavrencic, “Contact angles in CO2–water–coal systems at elevated pressures,” International Journal of Coal Geology, 87 (1), 26–32 (2011).CrossRefGoogle Scholar
  7. 7.
    S. Wong, D. Law, X. Deng, J. Robinson, B. Kadatz, W. D. Gunter, J. P. Ye, S. L. Feng, and Z. Q. Fan, “Enhanced coalbed methane and CO2 storage in anthracitic coal-micro-pilot test at South Qinshui, Shanxi, China,” International Journal of Greenhouse Gas Control, 1, No. 2, 215–222 (2007).CrossRefGoogle Scholar
  8. 8.
    A. Busch and Y. Gensterblum, “CBM and CO2-ECBM related sorption process in coal: A review,” International Journal of Coal Geology, 87, No. 2, 49–71 (2011).CrossRefGoogle Scholar
  9. 9.
    M. S. Seehra, A. Kalra, and A. Manivannan, “Dewatering of fine coal slurries by selective heating with microwave,” Fuel, 86, Nos. 5–6, 829–834 (2007).CrossRefGoogle Scholar
  10. 10.
    C. T. Chengquan, The Application and Research of Coal Wettability. China Coal Industry Publishing House, Beijing (1992).Google Scholar
  11. 11.
    B. S. Nie, X. Q. He, E. Y. Wang, and L. Zhang, “Micro-mechanism of coal adsorbing water,” Journal of China University of Mining & Technology, 33, No. 4, 380–383 (2004).Google Scholar
  12. 12.
    S. X. Sang, Y. M. Zhu, J. Zhang, X. D. Zhang, and S. Y. Zhang, “Experiments of the influence of water on coalbed methane adsorption: the coal reservoir in the south of Qinshui Basin,” Chinese Science Bulletin, 50, No. 1, 70–75 (2005).Google Scholar
  13. 13.
    S. Y. Zhang and S. X. Sang, “Influence mechanism of liquid water on methane adsorption of coals with different ranks,” Acta Geologica Sinica, 82, No. 10, 1350–1354 (2008).Google Scholar
  14. 14.
    Z. D. Li, Y. P. Ji, and K. P. Liu, “Experimental study of moisture on 22 coal seam gas adsorption and desorption rules,” Coal, 21, No. 5, 4–7 (2012).Google Scholar
  15. 15.
    P. H. Given, A. Marzec, W. A. Barton, L. J. Lynch, and B. C. Gerstein, “The concept of a mobile or molecular phase within the macromolecular network of coals: a debate,” Fuel, 65, No. 2, 155–163 (1986).CrossRefGoogle Scholar
  16. 16.
    N. Suarez, E. Laredo, and R. Nava, “Characterization of four hydrophilic sites in bituminous coal by ionic thermal current measurements,” Fuel, 72, No. 1, 13–18 (1993).CrossRefGoogle Scholar
  17. 17.
    T. Iiyama, K. Nishikawa, T. Suzuki, and K. Kaneko, “Study of the structure of a water molecular assembly in a hydrophobic nanospace at low temperature with in situ X-ray diffraction,” Chemical Physics Letters, 274, Nos. 1–3, 152–158 (1997).CrossRefGoogle Scholar
  18. 18.
    J. Alcaniz-Mongue, A. Linares-Solano, and B. Rand, “Mechanism of adsorption of water in carbon micropores as revealed by a study of activated carbon fibers,” J. Phys. Chem., 106, No. 12, 3209–3216 (2001).CrossRefGoogle Scholar
  19. 19.
    J. T. Jingyi and S. C. Daxiong, Adsorption Science, Chemical Industry Press, Beijing (2010).Google Scholar
  20. 20.
    D. J. Allardice and D. G. Evans, “The brown coal/water system: Part 2. Water sorption isotherms on bed-moist Yallourn brown coal,” Fuel, 50, No. 3, 236–253 (1971).CrossRefGoogle Scholar
  21. 21.
    A. L. McCutcheon, W. A. Barton, and M. A. Wilson, “Kinetics of water adsorption/desorption on bituminous coals,” Energy & Fuels, 15, No. 6, 1387–1395 (2001).CrossRefGoogle Scholar
  22. 22.
    D. Charrière and P. Behra, “Water sorption on coals,” Journal of Colloid and Interface Science, 344, No. 2, 460–467 (2010).CrossRefGoogle Scholar
  23. 23.
    T. Horikawa, T. Sekida, J. I. Hayashi, M. Katoh, and D. D. Do, “A new adsorption-desorption model for water adsorption in porous carbons,” Carbon, 49, No. 2, 416–424 (2010).CrossRefGoogle Scholar
  24. 24.
    L. H. Cohan, “Hysteresis and the capillary theory of adsorption of vapors,” J. Am. Chem. Soc., 66 (1), 98–105 (1944).CrossRefGoogle Scholar
  25. 25.
    A. G. Foster, “Sorption hysteresis. Part II. The role of the cylindrical meniscus effect,” J. Chem. Soc. (Resumed), 1806–1812 (1952).Google Scholar
  26. 26.
    Y. Gensterblum, A. Merkel, A. Busch, and B. M. Krooss, “High-pressure CH4 and CO2 sorption isotherms as a function of coal maturity and the influence of moisture,” International Journal of Coal Geology,118, 45–57 (2013).CrossRefGoogle Scholar
  27. 27.
    S. Day, R. Sakurovs, and S. Weir, “Supercritical gas sorption on moist coals,” International Journal of Coal Geology, 74, Nos. 3–4, 203–214 (2008).CrossRefGoogle Scholar
  28. 28.
    E. Ozdemir and K. Schroeder, “Effect of moisture on adsorption isotherms and adsorption capacities of CO2 on coals,” Energy & Fuels, 23, No. 5, 2821–2831 (2009).CrossRefGoogle Scholar
  29. 29.
    T. A. Moore, “Coalbed methane: A review,” International Journal of Coal Geology, 101, 36–81 (2012).CrossRefGoogle Scholar
  30. 30.
    P. Grathwohl, Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics, Kluwer Academic, Portland (1998).CrossRefGoogle Scholar
  31. 31.
    Z. J. Pan, L. D. Connell, M. Camilleri, and L. Connelly, “Effects of matrix moisture on gas diffusion and flow in coal,” Fuel, 89, No. 11, 3207–3217 (2010).CrossRefGoogle Scholar
  32. 32.
    H. Xu, D. Z. Tang, S. H. Tang, J. L. Zhao, Y. J. Meng, and S. Tao, “A dynamic prediction model for gas-water effective permeability based on coalbed methane production data,” International Journal of Coal Geology, 121, 44–52 (2014).CrossRefGoogle Scholar
  33. 33.
    X. H. Fu and Y. Qin, Theories and Techniques of Permeability Prediction of Multiphase Medium Coalbed Methane Reservoirs, China University of Mining and Technology Press, Xuzhou (2003).Google Scholar
  34. 34.
    J. Shen, Y. Qin, G. X. Wang, X. H. Fu, C. T. Wei, and B. Lei, “Relative permeabilities of gas and water for different rank coals,” International Journal of Coal Geology, 86, Nos. 2–3, 266–275 (2011).CrossRefGoogle Scholar
  35. 35.
    S. G. Wang, D. Elsworth, and J. S. Liu, “Permeability evolution in fractured coal: The roles of fracture geometry and water-content,” International Journal of Coal Geology, 87, No. 1, 13–25 (2011).CrossRefGoogle Scholar
  36. 36.
    G. Z. Yin, C. B. Jiang, J. Xu, and G. Huang, The Coupling Mechanism and Experimental Study of Solid–liquid-Gas in the Process of Deep Coal and Methane Exploitation, Science Press, Beijing (2012).Google Scholar
  37. 37.
    Y. J Xu and D. H. Tu, “Capillary wettability of coal seam water injection,” Hebei Coal, No. 3, 20–23 (1996).Google Scholar
  38. 38.
    E. W. Washburn, “The dynamics of capillary flow,” Physical Review, 17, 273–283 (1921).CrossRefGoogle Scholar
  39. 39.
    M. K. Dabbous, A. A. Reznik, J. J. Taber, and P. F. Fulton, “The permeability of coal to gas and water,” Society of Petroleum Engineers Journal, 257, 563–572 (1974).CrossRefGoogle Scholar
  40. 40.
    A. A. Reznik, M. K. Dabbous, P. F. Fulton, and J. J. Taber, “Air-water relative permeability studies of Pittsburgh and Pocahontas coals,” Society of Petroleum Engineers Journal, 257, 556–562 (1974).CrossRefGoogle Scholar
  41. 41.
    K. Meaney and L. Paterson, “Relative permeability in coal,” in: SPE Asia Pacific Oil & Gas Conference, 28–31 October 1996, Adelaide, Australia (1996); SPE 36986.Google Scholar
  42. 42.
    S. Durucan, M. Ahsan, A. Syed, J. Q. Shi, and A. Korre, “Two phase relative permeability of gas and water in coal for enhanced coalbed methane recovery and CO2 storage,” Energy Procedia, 37, 6730–6737 (2013).CrossRefGoogle Scholar
  43. 43.
    D. Chen, J. Q. Shi, S. Durucan, and A. Korre, “Gas and water relative permeability in different coals: Model match and new sights,” International Journal of Coal Geology, 122, 37–49 (2014).CrossRefGoogle Scholar
  44. 44.
    S. E. Laubach, R. A. Marrett, J. E. Olson, and A. R. Scott, “Characteristic and origins of coal cleat: a review,” International Journal of Coal Geology, 35, 175–207 (1998).CrossRefGoogle Scholar
  45. 45.
    L. Hao and B. Y. Duan, “The impact of water in coal seam on CBM yield,” China Coalbed Methane, No. 4, 32–34 (2012).Google Scholar
  46. 46.
    B. G. Kutchko, A. L. Goodman, E. Rosenbaum, S. Natesakhawat, and K. Wagner, “Characterization of coal before and after supercritical CO2 exposure via feature relocation using field-emission scanning electron microscopy,” Fuel, 107, 777–786 (2013).CrossRefGoogle Scholar
  47. 47.
    R. Shukla, P. Ranjith, A. Haque, and X. Choi, “A review of studies on CO2 sequestration and caprock integrity,” Fuel, 89, No. 10, 2651–2664 (2010).CrossRefGoogle Scholar
  48. 48.
    M. S. A. Perera, P. G. Ranjith, S. K. Choi, and D. Airey, “Investigation of temperature effect on permeability of naturally fractured black coal for carbon dioxide movement: An experimental and numerical study,” Fuel, 94, 596–605 (2012).CrossRefGoogle Scholar
  49. 49.
    V. Vishal, P. G. Ranjith, S. P. Pradhan, and T. N. Singh, “Permeability of sub-critical carbon dioxide in naturally fractured Indian bituminous coal at a range of down-hole stress conditions,” Engineering Geology, 167, 148–156 (2013).CrossRefGoogle Scholar
  50. 50.
    S. M. Chi, B. I. Morsi, G. E. Klinzing, and S. H. Chiang, “Study of interfacial properties in the liquid CO2-water-coal system,” Energy & Fuels, 2, No. 1, 141–145 (1988).CrossRefGoogle Scholar
  51. 51.
    N. Siemons, H. Bruining, H. Castelijns, and K. A. Wolf, “Pressure dependence of the contact angle in a CO2-H2O-coal system,” Journal of Colloid and Interface Science, 297, No. 2, 755–761 (2006).CrossRefGoogle Scholar
  52. 52.
    T. Chaturvedi, J. M. Schembre, and A. R. Kovscek, “Spontaneous imbibition and wettability characteristics of Powder River Basin coal,” International Journal of Coal Geology, 77, No. 1–2, 34–42 (2009).CrossRefGoogle Scholar
  53. 53.
    D. P. Lindroth, “Microwave drying of fine coal,” US Bureau of Mines Report #9005, US Department of the Interior (1986).Google Scholar
  54. 54.
    S. Marland, B. Han, A. Merchant, and N. Rowson, “The effect of microwave radiation on coal grindability,” Fuel, 79, No. 11, 1283–1288 (2000).CrossRefGoogle Scholar
  55. 55.
    E. Lester and S. Kingman, “The effect of microwave preheating on five different coals,” Fuel, 83, 3–17 (2004).CrossRefGoogle Scholar
  56. 56.
    J. Graham and K. Boddeus, “Microwave pretreatment of coal prior to milling,” in: Tenth Australian Coal Science Conference, Brisbane, Queensland (2013).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jinxuan Han
    • 1
  • Zhaozhong Yang
    • 1
  • Xiaogang Li
    • 1
  • Jian Zhang
    • 2
  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum UniversityChengduChina
  2. 2.China United Coalbed Methane Corporation, Ltd.BeijingChina

Personalised recommendations