Advertisement

Chemistry and Technology of Fuels and Oils

, Volume 46, Issue 6, pp 378–384 | Cite as

Reaction of pore depressants and solvents

  • Sheng Han
  • Kui Zeng
  • Shaodian Shen
  • Fengzhi Tan
Chemmotology
  • 41 Downloads

Use of pour depressants is the most effective and economical method of improving the low-temperature properties of diesel fuels. The reaction of T1804D pour depressant with different solvents was investigated by differential scanning calorimetry. It was shown that they affect the decrease in the limiting filterability temperature and the solid point of diesel fuel to a different degree. The effectiveness of the pour depressant increased when it was mixed with aromatic solvents that ensure dissolution and dispersion of wax crystals in diesel fuel at low temperatures.

Key words

Diesel fuel pour depressant solvent 

References

  1. 1.
    US Patent No. 6593426.Google Scholar
  2. 2.
    US Patent No. 6017370.Google Scholar
  3. 3.
    Zhang Jin-li, Wu Chuanjie, Li Wei, et al., Fuel, 82, 1419-1426 (2003).CrossRefGoogle Scholar
  4. 4.
    Chuanjie Wuk, Jin-li Zhang, Wei Li, et al., Fuel, 84, 2039-2047 (2005).CrossRefGoogle Scholar
  5. 5.
    R. A. Soldi, A. R. S. Oliveira, R. V. Barbosa, et al., Eur. Polym. J., 43, 3671-3678 (2007).CrossRefGoogle Scholar
  6. 6.
    Cuiyu Jiang, Ming Xu, and Xiaoli Xi, J. Nat. Gas Chem., 15, 217-222 (2006).CrossRefGoogle Scholar
  7. 7.
    Sheng Han, Yuping Song, and Tianhui Ren, Energy Fuels, 23, 2576-2580 (2009).CrossRefGoogle Scholar
  8. 8.
    Liu Shufeng and Wang Shujun, Adv. Fine Petrochem., 2, No. 4, 33-36 (2001).Google Scholar
  9. 9.
    Huang Ying-xiong, Shandong Chem. Ind., 37, 20-22 (2008).Google Scholar
  10. 10.
    Zhao Guang-hui, Guan Xu, Cui Xi-hong, et al., Chem. Intermed., 10, 15-19 (2007).Google Scholar
  11. 11.
    N. M. Ribeiro, A. C. Pinto, C. M. Quintella, et al., Energy Fuels, 21, 2433-2445 (2007).CrossRefGoogle Scholar
  12. 12.
    L. V. Castro and F. Fazquez, Ibid., 22, 4006-4011 (2008).Google Scholar
  13. 13.
    C. D. Gamlin, N. K. Dutta, N. R. Choudhury, et al., Thermochim. Acta, 392-393, 357-369 (2002).CrossRefGoogle Scholar
  14. 14.
    A. A. Hafiz and T. T. Khidr, J. Petrol. Sci. Eng., 56, 296-302 (2007).CrossRefGoogle Scholar
  15. 15.
    L. C. Machado, E. F. Lucas, and G. Gonzalez, Ibid., 32, 159-165 (2001).Google Scholar
  16. 16.
    I. M. El-Gamal, Physicochem. Eng. Aspects, 135, 283-291 (1998).CrossRefGoogle Scholar
  17. 17.
    A. Jukic, M. Rogosic, and Z. Janovic, Eur. Polym. J., 42, 1105-1112 (2006).CrossRefGoogle Scholar
  18. 18.
    W. H. Chen, X. D. Zhang, Z. C. Zhao, et al., Fluid Phase Equilibr., 280, 9-15 (2009).CrossRefGoogle Scholar
  19. 19.
    Cai Zhi, Huang Wei-qiu, and Li Wei-ming, Beijing China Petrochem. Press, 20-23 (2005).Google Scholar
  20. 20.
    Zhang Hong-xi, Xie Chen-xi, and Chen Zhao-hui, J. Xinjiang Univ. (Natural Science Ed.), 21, No. 3, 282284 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • Sheng Han
    • 1
  • Kui Zeng
    • 1
  • Shaodian Shen
    • 1
  • Fengzhi Tan
    • 1
  1. 1.Shanghai Institute of TechnologyDalian Polytechnic UniversityDalian(PR China)

Personalised recommendations