Advertisement

Chemistry and Technology of Fuels and Oils

, Volume 43, Issue 5, pp 437–447 | Cite as

Physicochemical principles of preparation of emulsion fuels

  • S. L. Khil’ko
  • E. V. Titov
Reviews

Abstract

The basic physicochemical principles of preparation of emulsion fuel compositions based on heavy and extra-heavy crude cuts were analyzed with consideration of the nature and content of the phases constituting the emulsion, type of chemical additives — emulsifiers and stabilizers, and type of equipment for production of emulsion fuels.

Keywords

Patent Application Lignosulfonate Plastic Viscosity Multiple Emulsion Vacuum Resids 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Yu. Batueva, A. A. Garle, and Yu.[ V. Pokonova, Petroleum Chemistry [in Russian], Khimiya, Leningrad (1984).Google Scholar
  2. 2.
    R. Z. Magaril, Theoretical Principles of Chemical Processes in Oil Refining [in Russian], Khimiya, Leningrad (1985).Google Scholar
  3. 3.
    D. F. Varfolomeev, Khim. Tekhnol. Topl. Masel, No. 11, 24–28 (1987).Google Scholar
  4. 4.
    K. Entsmann and I. Khint, Activation of an Oil-in-Water Emulsion in a 7DA unit. Universal Disintegrator Activation [in Russian], Tallin (1980), pp. 82–86.Google Scholar
  5. 5.
    Giorgio Foa, Textilia, 67, No. 1, 16–18 (1990–1991).Google Scholar
  6. 6.
    V. P. Mikhailichenko, V. A. Leshchenko, V. K. Tikkshchenko, et al., Vestn.Khar’kov. Univ. No. 258, 26–28 (1988).Google Scholar
  7. 7.
    Japanese Patent Application No. 53-50204.Google Scholar
  8. 8.
    A. V. Basovich, V. M. Ivanov, and I. V. M. Radovitskii, Submission No. 2317 UP-D82, TsNIEIugol’, IGI, Moscow (1982).Google Scholar
  9. 9.
    Japanese Patent Applications Nos. 59-197494 and 61-47796.Google Scholar
  10. 10.
    Danish Patent Application No. 150184.Google Scholar
  11. 11.
    Japanese Patent Application No. 54-32445.Google Scholar
  12. 12.
    M. Morita and M. Katada, Chem. Plants Process, 25, No. 2, 64–68 (1992).Google Scholar
  13. 13.
    R. Strey and M. Kahlweit, Progr. Coll. Polym. Sci., 81, No. 5, 215–216 (1990).CrossRefGoogle Scholar
  14. 14.
    J. W. Allen and P. R. Beal, in: 23 rd Int. Tech. Conf. “Clearwater,” USA (March, 1998), p. 723.Google Scholar
  15. 15.
    F. Marruffo and W. Sarmiento, in: 22 nd Int. Tech. Conf. “Clearwater,” USA (March, 1997), p. 13.Google Scholar
  16. 16.
    R. Ron, Coal Synfuels Technol., 15, No. 30, 7 (1994).Google Scholar
  17. 17.
    A. N. Smeet, Coal Trans., 1, No. 7, 6 (1993).Google Scholar
  18. 18.
    “Orimulsion scores in Japan,” Int. Coal Rept., No. 344, 11 (1994).Google Scholar
  19. 19.
    S. J. Lakatos and I. Lakatos, Acta Chim. Hung., 121, No. 4, 345 (1986).Google Scholar
  20. 20.
    C. Robertus, J. G. H. Joosten, and Y. K. Levine, J. Chem. Phys., 93, No. 10, 793–800 (1990).CrossRefGoogle Scholar
  21. 21.
    G. P. Canevari, in: Oil Spill Conf.; Meeting, Baltimore, Apr. 6–9, 1987, Washington, DC (1987), pp. 293–296.Google Scholar
  22. 22.
    E. Papirer, C. Bourgeois, B. Siffert, et al., Fuel, 61, No. 8, 732–734 (1982).CrossRefGoogle Scholar
  23. 23.
    P. Sherman (ed.), Emulsion Science, Academic, New York (1968).Google Scholar
  24. 24.
    P:. A. Rebinder, Surface Phenomena in Disperse Systems. Physicochemical Mechanics. Selected Works [in Russian], Nauka, Moscow (1979).Google Scholar
  25. 25.
    V. M. Ivanov, Fuel Emulsions [in Russian], Izd. Akad. Nauk SSSR, Moscow (1962).Google Scholar
  26. 26.
    V. M. Ivanov, I. V. Radovetskii, and V. A. Tsenev, Khim. Tekhnol. Topl. Masel, No. 6, 18–20 (1985).Google Scholar
  27. 27.
    A. M. Gaponenko, I. G. Kartoeev, and O. M. Grigor’eva, Submitted to AgroNIITEIpishcheprome (12.22.87), No. 1700-pshch 87.Google Scholar
  28. 28.
    Japanese Patent Applications Nos. 57-205490 and 55-5800.Google Scholar
  29. 29.
    British Patent Application No. 2109405.Google Scholar
  30. 30.
    US Patent No. 5024676.Google Scholar
  31. 31.
    Japanese Patent Application Nos. 5-31910 and 5-31912.Google Scholar
  32. 32.
    J. Balazs, I. Eros, and M. Szulimon, in: Proc. 5 th Conf. Colloid Chem. Met. Ervin Wolfram Balatonfured, 4 Oct. 1988, Budapest (1990), p. 114.Google Scholar
  33. 33.
    French Patent Application No. 2589160.Google Scholar
  34. 34.
    Japanese Patent Application No. 61-215696.Google Scholar
  35. 35.
    I. S. Lavrov (ed.), Handbook of Colloid Chemistry [in Russian], Vysshaya Shkola, Moscow (1983).Google Scholar
  36. 36.
    Marie-Paule Fileni, Recherche, 22, No. 236, 1220 (1991).Google Scholar
  37. 37.
    Th. Forster, F. Schambil, and W. Rybinski, J. Dispers. Sci. Technol., 13, No. 2, 183 (1992).CrossRefGoogle Scholar
  38. 38.
    USSR Inventor’s Certificate No. 1364827.Google Scholar
  39. 39.
    Hungarian Patent Application No. 182366.Google Scholar
  40. 40.
    Canadian Patent No. 1289847.Google Scholar
  41. 41.
    Japanese Patent Application No. 61-233085.Google Scholar
  42. 42.
    US Patent No. 5024676.Google Scholar
  43. 43.
    Japanese Patent Application No. 1-313592.Google Scholar
  44. 44.
    Japanese Patent Application No. 247492.Google Scholar
  45. 45.
    J. L. Salager, M. Bourrel, and R. S. Schechter, Soc. Petrol. Eng. J., 19, No. 5, 271 (1979).Google Scholar
  46. 46.
    US Patent No. 4099537.Google Scholar
  47. 47.
    B. E. Chistyakov and V. T. Bedenko, Khim. Tekhnol. Topl. Masel, No. 3, 22 (1982).Google Scholar
  48. 48.
    USSR Inventor’s Certificates Nos. 598927 and 1014275.Google Scholar
  49. 49.
    USSR Inventor’s Certificate No. 704651.Google Scholar
  50. 50.
    US Patent No. 5284492.Google Scholar
  51. 51.
    Japanese Patent Application No. 60-104190.Google Scholar
  52. 52.
    US Patent No. 340169.Google Scholar
  53. 53.
    Japanese Patent Application No. 52-109507.Google Scholar
  54. 54.
    FRG USSR Inventor’s Certificate No. 2940782.Google Scholar
  55. 55.
    USSR Inventor’s Certificate No. 1273355.Google Scholar
  56. 56.
    Japanese Patent Application No. 53-12906.Google Scholar
  57. 57.
    FRG Patent Application No. 2713067Google Scholar
  58. 58.
    British Patent No. 1525377.Google Scholar
  59. 59.
    RST Patent Application No. WO 94/09094.Google Scholar
  60. 60.
    US Patent No. 4943390.Google Scholar
  61. 61.
    CSSR USSR Inventor’s Certificate No. 267777.Google Scholar
  62. 62.
    British Patent Application No. 2235465.Google Scholar
  63. 63.
    Japanese Patent Application No. 1-203498.Google Scholar
  64. 64.
    British Patent No. 1523597.Google Scholar
  65. 65.
    US Patents Nos. 4976745 and 5024676.Google Scholar
  66. 66.
    French Patent Application No. 2561540.Google Scholar
  67. 67.
    Japanese Patent Application No. 1-313595.Google Scholar
  68. 68.
    USSR Inventor’s Certificate No. 1284989.Google Scholar
  69. 69.
    Japanese Patent Application No. 53-48207.Google Scholar
  70. 70.
    French Patent Application No. 2421940.Google Scholar
  71. 71.
    L. M. Mirzaeva, M. I. Rustamov, and B. K. Zeinalov, Vopr. Neftekhim., No. 17, 94 (1991).Google Scholar
  72. 72.
    US Patent No. 4793826.Google Scholar
  73. 73.
    Japanese Patent Application No. 64-16893.Google Scholar
  74. 74.
    Japanese Patent Application No. 54-15762.Google Scholar
  75. 75.
    USSR Inventor’s Certificate No. 1773933.Google Scholar
  76. 76.
    D. W. Locklin, H. H. Krause, W. T. Reid, et al., Combustion (USA), 51, No. 8, 26–33 (1980).Google Scholar
  77. 77.
    USSR Inventor’s Certificate No. 1829390.Google Scholar
  78. 78.
    Ukraine Patent No. 5583.Google Scholar
  79. 79.
    S. L. Khil’ko, E. V. Titov, and A. A. Fedoseeva, Colloid Chemistry and Physicochemical Mechanics of Natural Disperse Systems [in Russian], NPO VOTUM, Odessa (1997), pp. 105–107.Google Scholar
  80. 80.
    S. L. Khil’ko and E. V. Titov, Kolloidn. Zh., 57, No. 6, 873–877 (1995).Google Scholar
  81. 81.
    S. L. Khil’ko, E. V. Titov, A. F. Popov, et al., Khim. Promyshl. Ukr., No. 4, 7–12 (1999).Google Scholar
  82. 82.
    S. L. Khil’ko and E. V. Titov, Khim. Tverd. Topl., No. 1, 78–87 (2001).Google Scholar
  83. 83.
    S. L. Khil’ko and E. V. Titov, Vibrotechnology-98 [in Russian], NPO VOTUM, Odessa (1998), pp. 98–101.Google Scholar
  84. 84.
    S. L. Khil’ko and E. V. Titov, Processing of Disperse Materials and Media [in Russian], NPO Votum, Odessa (20010, pp. 211–212.Google Scholar
  85. 85.
    S. L. Khil’ko and E. V. Titov, Zh. Prikl. Khim., No. 8, 1383–1386 (2000).Google Scholar
  86. 86.
    S. L. Khil’ko and E. V. Titov, Neft. Gaz. Promyshl. (Kiev), No. 2, 56–59 (2001).Google Scholar
  87. 87.
    S. L. Khil’ko and E. V. Titov, Azer. Neft. Khozyaistvo, No. 4, 40–44 (1997).Google Scholar
  88. 88.
    S. L. Khil’ko, E. V. Titov, and D. A. Balabanits, Colloid Chemistry and Physicochemical Mechanics of Natural Disperse Systems [in Russian], NPO VOTUM, Odessa (1997), pp. 18–20.Google Scholar
  89. 89.
    S. L. Khil’ko, E. V. Titov, and A. A. Fedoseeva, Kolloidn. Zh., 63, No. 5, 706–710 (2001).Google Scholar
  90. 90.
    S. L. Khil’ko, E. V. Titov, A. A. Fedoseeva, et al., Khim. Tverd. Topl., No. 6, 27–36 (2003).Google Scholar
  91. 91.
    S. L. Khil’ko, E. V. Titov, A. A. Fedoseeva, et al., Ibid., No. 2, 41–52 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • S. L. Khil’ko
    • 1
  • E. V. Titov
    • 1
  1. 1.Institute of Physical Organic Chemistry and Carbon ChemistryNational Academy of Sciences of UkraineUkraine

Personalised recommendations