Advertisement

Chemistry and Technology of Fuels and Oils

, Volume 41, Issue 5, pp 341–356 | Cite as

Initiation of Visbreaking of Atmospheric Resid with an Active Electron Beam

  • N. M. Likhterova
  • V. V. Lunin
  • V. N. Torkhovskii
  • A. V. Fionov
  • G. S. Serkovskaya
  • V. V. Kravchenko
  • E. S. Vasil'eva
  • Kolin Adzhinomo
Article
  • 17 Downloads

Abstract

Comprehensive studies of the effect of the dose characteristics of an active electron beam on conversion of the components of ozonized and straight-run atmospheric resid were conducted for the first time. It was shown that preliminary ozonation totally alters the mechanism and paths of radiolysis reactions. The structure of the heavy crude oil feedstock changed and the concentration of vanadylporphyrins decreased by 1.3 times.

Keywords

Ozonation Electron Beam Resid Mineral Resource Active Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Yu. A. Volodin, Candidate Dissertation, I. M. Gubkin Russian State University of Oil and Gas, Moscow (1999).Google Scholar
  2. 2.
    Yu. V. Loskutova, Candidate Dissertation, Institute of Chemical Sciences, Siberian Branch, Russian Academy of Sciences, Tomsk (2003).Google Scholar
  3. 3.
    Yu. V. Loskutova and N. V. Yudina, Neftekhimiya, 44, No.1, 63–67 (2004).Google Scholar
  4. 4.
    T. M. Rasputina, Candidate Dissertation, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow (1992).Google Scholar
  5. 5.
    V. M. Giniyatullin, E. G. Telyashev, and S. F. Urmancheev, Neftepererab. Neftekhim., No. 8, 18–21 (1997).Google Scholar
  6. 6.
    V. M. Giniyatullin, Candidate Dissertation, Ufa State Petroleum Engineering University, Ufa (1998).Google Scholar
  7. 7.
    D. L. Rakhmankulov, S. Yu. Shavshukova, F. N. Latynova, et al., Zh. Prikl. Khim., 75, No.9, 1409–1416 (2002).Google Scholar
  8. 8.
    D. L. Rakhmankulov, I. Kh. Bikbulaev, N. S. Shulaev, et al., Microwave Radiation and Intensification of Chemical Processes [in Russian], Khimiya, Moscow (2003).Google Scholar
  9. 9.
    L. T. Bugaenko, M. G. Kuz'min, and L. S. Polak, High-Energy Chemistry [in Russian], Khimiya, Moscow (1988).Google Scholar
  10. 10.
    V. V. Saraeva, Liquid-Phase Radiolysis of Hydrocarbons [in Russian], Izd. MGU, Moscow (1986).Google Scholar
  11. 11.
    G. Feldiak (ed.), Radiolysis of Hydrocarbons [in Russian], Energoatomizdat, Moscow (1985).Google Scholar
  12. 12.
    A. V. Topchiev and L. S. Polak (eds.), Radiolysis of Hydrocarbons [in Russian], Izd. Akad. Nauk SSSR, Moscow (1962).Google Scholar
  13. 13.
    V. V. Saraeva and E. P. Kolyazin, Khim. Vys. Energ., 19, No.3, 218 (1985).Google Scholar
  14. 14.
    V. V. Saraeva, in: Current Problems in Physical Chemistry [in Russian], Vol. 8, Izd. MGU, Moscow (1975), pp. 367–434.Google Scholar
  15. 15.
    G. I. Zhuravlev, I. V. Borisenko, S. V. Voznesenskaya, et al., Khim. Vys. Energ., 25, No.1, 27–31 (1991).Google Scholar
  16. 16.
    I. I. Mustafaev, Ibid., 24, No.1, 22–26 (1990).Google Scholar
  17. 17.
    N. K. Nadirov, R. F. Zaikina, and Yu. A. Zaikin, Energet. Topl. Resursy Kazakh., No. 1, 65–69 (1995).Google Scholar
  18. 18.
    N. K. Nadirov, R. F. Zaikina, and Yu. A. Zaikin, Rep. Kazakhstan Patent; Byul. Izobr., No. 1 (04.14.1995).Google Scholar
  19. 19.
    USSR Inventor's Certificate No. 780 722.Google Scholar
  20. 20.
    R. F. Zaikina, Yu. A. Zaikin, and N. K. Nadirov, Neft' Gaz Kazakh., No. 1, 81–85 (1996).Google Scholar
  21. 21.
    N. M. Likhterova, V. V. Lunin, V. N. Torkhovskii, et al., Neftekhimiya, 45, No.1, 3–14 (2005).Google Scholar
  22. 22.
    F. G. Unger and L. N. Andreeva, Fundamental Aspects of Petroleum Chemistry. The Nature of Resins and Asphaltenes [in Russian], VO “Nauka”, Novosibirsk (1995).Google Scholar
  23. 23.
    D. C. Nonhebel and J. C. Walton, Free Radical Chemistry, Cambridge University Press, London (1974).Google Scholar
  24. 24.
    V. E. Zubarev, V. N. Belevskii, and L. T. Bugaenko, Usp. Khim., 48, No.8, 1361 (1979).Google Scholar
  25. 25.
    E. P. Petryaev and O. I. Shadyro, Radiation Chemistry of Bifunctional Organic Compounds [in Russian], Izd. Universitetskoe, Minsk (1986).Google Scholar
  26. 26.
    R. Z. Safieva, Physical Chemistry of Petroleum [in Russian], Khimiya, Moscow (1998).Google Scholar
  27. 27.
    G. S. Serkovskaya, Khim. Tekhnol. Topl. Masel, No. 4, 36–40 (1995).Google Scholar
  28. 28.
    L. P. Pal'me and M. Ya. Gubergrits, in: Theory and Practice of Liquid-Phase Oxidation [in Russian], Nauka, Moscow (1974), pp. 120–122.Google Scholar
  29. 29.
    Yu. S. Zaslavskii, Radiation Stability of Lubricants [in Russian], Moscow (1961).Google Scholar
  30. 30.
    V. V. Lunin, N. M. Likhterova, and V. N. Torkhovskii, Khim. Tekhnol. Topl. Masel, No. 4, 98–43 (1994).Google Scholar
  31. 31.
    R. O. Bolt and J. G. Carrol, Effect of Radiation on Organic Materials, Academic, New York (1963).Google Scholar
  32. 32.
    I. I. Melekhonova, M. F. Romantsev, V. V. Saraeva, et al., Neftepererab. Neftekhim., No. 6, 17–19 (1975).Google Scholar
  33. 33.
    B. G. Pechenyi, Asphalts and Asphalt Compositions [in Russian], Khimiya, Moscow (1990).Google Scholar
  34. 34.
    A. A. Grigor'ev, V. P. Kiselev, and Yu. V. Kiselev, Khim. Tekhnol. Topl. Masel, No. 1–2, 68–70 (2003).Google Scholar
  35. 35.
    A. A. Gureev and V. S. Azev, Automotive Gasolines. Properties and Use [in Russian], Neft' i Gaz, Moscow (1996).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • N. M. Likhterova
    • 1
    • 2
    • 3
  • V. V. Lunin
    • 1
    • 2
    • 3
  • V. N. Torkhovskii
    • 1
    • 2
    • 3
  • A. V. Fionov
    • 1
    • 2
    • 3
  • G. S. Serkovskaya
    • 1
    • 2
    • 3
  • V. V. Kravchenko
    • 1
    • 2
    • 3
  • E. S. Vasil'eva
    • 1
    • 2
    • 3
  • Kolin Adzhinomo
    • 1
    • 2
    • 3
  1. 1.M. V. Lomonosov State Academy of Fine Chemical TechnologyRussia
  2. 2.M. V. Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Scientific-Research Institute of Carcinogenesis, Oncology CenterRussian Academy of Medical SciencesRussia

Personalised recommendations