Skip to main content

Advertisement

Log in

Associations of mammographic breast density with breast stem cell marker-defined breast cancer subtypes

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

High mammographic breast density is a strong, well-established breast cancer risk factor. Whether stem cells may explain high breast cancer risk in dense breasts is unknown. We investigated the association between breast density and breast cancer risk by the status of stem cell markers CD44, CD24, and ALDH1A1 in the tumor.

Methods

We included 223 women with primary invasive or in situ breast cancer and 399 age-matched controls from Mayo Clinic Mammography Study. Percent breast density (PD), absolute dense area (DA), and non-dense area (NDA) were assessed using computer-assisted thresholding technique. Immunohistochemical analysis of the markers was performed on tumor tissue microarrays according to a standard protocol. We used polytomous logistic regression to quantify the associations of breast density measures with breast cancer risk across marker-defined tumor subtypes.

Results

Of the 223 cancers in the study, 182 were positive for CD44, 83 for CD24 and 52 for ALDH1A1. Associations of PD were not significantly different across t marker-defined subtypes (51% + vs. 11–25%: OR 2.83, 95% CI 1.49–5.37 for CD44+ vs. OR 1.87, 95% CI 0.47–7.51 for CD44−, p-heterogeneity = 0.66; OR 2.80, 95% CI 1.27–6.18 for CD24+ vs. OR 2.44, 95% CI 1.14–5.22 for CD24−, p-heterogeneity = 0.61; OR 3.04, 95% CI 1.14–8.10 for ALDH1A1+ vs. OR 2.57. 95% CI 1.30–5.08 for ALDH1A1−, p-heterogeneity = 0.94). Positive associations of DA and inverse associations of NDA with breast cancer risk were similar across marker-defined subtypes.

Conclusions

We found no evidence of differential associations of breast density with breast cancer risk by the status of stem cell markers. Further studies in larger study populations are warranted to confirm these associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. McCormack VA, dos Santos Silva I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomark Prev 15:1159–1169

    Article  Google Scholar 

  2. Vachon CM, Kuni CC, Anderson K, Anderson VE, Sellers TA (2000) Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control 11:653–662

    Article  CAS  PubMed  Google Scholar 

  3. Vachon CM, Sellers TA, Vierkant RA, Wu FF, Brandt KR (2002) Case–control study of increased mammographic breast density response to hormone replacement therapy. Cancer Epidemiol Biomark Prev 11:1382–1388

    CAS  Google Scholar 

  4. Titus-Ernstoff L, Tosteson AN, Kasales C, Weiss J, Goodrich M, Hatch EE, Carney PA (2006) Breast cancer risk factors in relation to breast density (United States). Cancer Causes Control 17:1281–1290

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tamimi RM, Hankinson SE, Colditz GA, Byrne C (2005) Endogenous sex hormone levels and mammographic density among postmenopausal women. Cancer Epidemiol Biomark Prev 14:2641–2647

    Article  CAS  Google Scholar 

  6. Yaghjyan L, Colditz GA, Rosner B, Bertrand KA, Tamimi RM (2016) Reproductive factors related to childbearing and mammographic breast density. Breast Cancer Res Treat 158:351–359

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cobaleda C, Cruz JJ, Gonzalez-Sarmiento R, Sanchez-Garcia I, Perez-Losada J (2008) The emerging picture of human breast cancer as a stem cell-based disease. Stem Cell Rev 4:67–79

    Article  PubMed  Google Scholar 

  8. Smalley M, Ashworth A (2003) Stem cells and breast cancer: a field in transit. Nat Rev Cancer 3:832–844

    Article  CAS  PubMed  Google Scholar 

  9. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997

    Article  CAS  PubMed  Google Scholar 

  10. Trichopoulos D, Adami HO, Ekbom A, Hsieh CC, Lagiou P (2008) Early life events and conditions and breast cancer risk: from epidemiology to etiology. Int J Cancer 122:481–485

    Article  CAS  PubMed  Google Scholar 

  11. Savarese TM, Low HP, Baik I, Strohsnitter WC, Hsieh CC (2006) Normal breast stem cells, malignant breast stem cells, and the perinatal origin of breast cancer. Stem Cell Rev 2:103–110

    Article  CAS  PubMed  Google Scholar 

  12. Giatromanolaki A, Sivridis E, Fiska A, Koukourakis M (2011) The CD44+/CD24− phenotype relates to ‘triple-negative’ state and unfavorable prognosis in breast cancer patients. Med Oncolgy 28(3):745–752

    Article  CAS  Google Scholar 

  13. Abraham BK, Fritz P, Van der Kuip H, Buck M, Szabo Z, Athelogou M, and Brauch H (2005) Evaluation of CD44+/CD24−/low cells in breast cancer and relevance for distant metastasis. AACR Meeting Abstracts, p 481

  14. Neumeister V, Agarwal S, Bordeaux J, Camp RL, Rimm DL (2010) In situ identification of putative cancer stem cells by multiplexing ALDH1, CD44, and cytokeratin identifies breast cancer patients with poor prognosis. Am J Pathol 176:2131–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eden JA (2010) Human breast cancer stem cells and sex hormones–a narrative review. Menopause 17:801–810

    PubMed  Google Scholar 

  16. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Lv DL, Duan JJ, Xu SL, Zhang JF, Yang XJ, Zhang X, Cui YH, Bian XW, Yu SC (2014) ALDH1A1 expression correlates with clinicopathologic features and poor prognosis of breast cancer patients: a systematic review and meta-analysis. BMC Cancer 14:444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yaghjyan L, Stoll E, Ghosh K, Scott CG, Jensen MR, Brandt KR, Visscher D, Vachon CM (2017) Tissue-based associations of mammographic breast density with breast stem cell markers. Breast Cancer Res 19:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vachon CM, Brandt KR, Ghosh K, Scott CG, Maloney SD, Carston MJ, Pankratz VS, Sellers TA (2007) Mammographic breast density as a general marker of breast cancer risk. Cancer Epidemiol Biomark Prev 16:43–49

    Article  Google Scholar 

  20. Bertrand KA, Tamimi RM, Scott CG, Jensen MR, Pankratz VS, Visscher D, Norman A, Couch F, Shepherd J, Fan B, Chen Y-Y, Ma L, Beck AH, Cummings SR, Kerlikowske K, Vachon CM (2013) Mammographic density and risk of breast cancer by age and tumor characteristics. Breast Cancer Res 15:R104

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ursin G, Ma H, Wu AH, Bernstein L, Salane M, Parisky YR, Astrahan M, Siozon CC, Pike MC (2003) Mammographic density and breast cancer in three ethnic groups. Cancer Epidemiol Biomark Prev 12:332–338

    Google Scholar 

  22. Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ (1994) The quantitative analysis of mammographic densities. Phys Med Biol 39:1629–1638

    Article  CAS  PubMed  Google Scholar 

  23. Boyd NF, Byng JW, Jong RA, Fishell EK, Little LE, Miller AB, Lockwood GA, Tritchler DL, Yaffe MJ (1995) Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst 87:670–675

    Article  CAS  PubMed  Google Scholar 

  24. Phipps AI, Buist DS, Malone KE, Barlow WE, Porter PL, Kerlikowske K, O’Meara ES, Li CI (2012) Breast density, body mass index, and risk of tumor marker-defined subtypes of breast cancer. Ann Epidemiol 22:340–348

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ziv E, Tice J, Smith-Bindman R, Shepherd J, Cummings S, Kerlikowske K (2004) Mammographic density and estrogen receptor status of breast cancer. Cancer Epidemiol Biomark Prev 13:2090–2095

    CAS  Google Scholar 

  26. Cerhan JR, Sellers TA, Janney CA, Pankratz VS, Brandt KR, Vachon CM (2005) Prenatal and perinatal correlates of adult mammographic breast density. Cancer Epidemiol Biomark Prev 14:1502–1508

    Article  Google Scholar 

  27. Ginestier C, Wicha MS (2007) Mammary stem cell number as a determinate of breast cancer risk. Breast Cancer Res 9:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xue F, Michels KB (2007) Intrauterine factors and risk of breast cancer: a systematic review and meta-analysis of current evidence. Lancet Oncol 8:1088–1100

    Article  PubMed  Google Scholar 

  29. Rice MS, Tamimi RM, Connolly JL, Collins LC, Shen D, Pollak MN, Rosner B, Hankinson SE, Tworoger SS (2012) Insulin-like growth factor-1, insulin-like growth factor binding protein-3 and lobule type in the nurses’ health study II. Breast Cancer Res 14:1–7

    Article  CAS  Google Scholar 

  30. Christopoulos PF, Msaouel P, Koutsilieris M (2015) The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer 14:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rinaldi S, Peeters PHM, Berrino F, Dossus L, Biessy C, Olsen A, Tjonneland A, Overvad K, Clavel-Chapelon F, Boutron-Ruault MC, Téhard B, Nagel G, Linseisen J, Boeing H, Lahmann PH, Trichopoulou A, Trichopoulos D, Koliva M, Palli D, Panico S, Tumino R, Sacerdote C, van Gils CH, van Noord P, Grobbee DE, Bueno-de-Mesquita HB, Gonzalez CA, Agudo A, Chirlaque MD, Barricarte A, Larrañaga N, Quiros JR, Bingham S, Khaw KT, Key T, Allen NE, Lukanova A, Slimani N, Saracci R, Riboli E, Kaaks R (2006) IGF-I, IGFBP-3 and breast cancer risk in women: the European prospective investigation into cancer and nutrition (EPIC). Endocr Relat Cancer 13:593–605

    Article  CAS  PubMed  Google Scholar 

  32. Baer HJ, Colditz GA, Willett WC, Dorgan JF (2007) Adiposity and sex hormones in girls. Cancer Epidemiol Biomark Prev 16:1880–1888

    Article  CAS  Google Scholar 

  33. Bertrand KA, Baer HJ, Orav EJ, Klifa C, Shepherd JA, Van Horn L, Snetselaar L, Stevens VJ, Hylton NM, Dorgan JF (2015) Body fatness during childhood and adolescence and breast density in young women: a prospective analysis. Breast Cancer Res 17:1–10

    Article  Google Scholar 

  34. Poole EM, Tworoger SS, Hankinson SE, Schernhammer ES, Pollak MN, Baer HJ (2011) Body size in early life and adult levels of insulin-like growth factor 1 and insulin-like growth factor binding protein 3. Am J Epidemiol 174:642–651

    Article  PubMed  PubMed Central  Google Scholar 

  35. Warner ET, Eliassen AH, Chen WY, Holmes MD, Willett WC, Tamimi RM (2013) Abstract 130: childhood and adolescent body size and risk of fatal breast cancer. Cancer Res 73:130

    Google Scholar 

  36. Baer HJ, Colditz GA, Rosner B, Michels KB, Rich-Edwards JW, Hunter DJ, Willett WC (2005) Body fatness during childhood and adolescence and incidence of breast cancer in premenopausal women: a prospective cohort study. Breast Cancer Res 7:1–12

    Article  Google Scholar 

  37. Palmer JR, Adams-Campbell LL, Boggs DA, Wise LA, Rosenberg L (2007) A prospective study of body size and breast cancer in black women. Cancer Epidemiol Biomark Prev 16:1795–1802

    Article  Google Scholar 

  38. Frazier AL, Rosenberg SM (2013) Pre-adolescent and adolescent risk factors for benign breast disease. J Adolesc Health 52:S36–S40

    Article  PubMed  PubMed Central  Google Scholar 

  39. Warner ET, Hu R, Collins LC, Beck AH, Schnitt S, Rosner B, Eliassen AH, Michels KB, Willett WC, Tamimi RM (2016) Height and body size in childhood, adolescence, and young adulthood and breast cancer risk according to molecular Subtype in the nurses’ health studies. Cancer Prev Res 9:732–738

    Article  Google Scholar 

  40. Woolcott CG, Koga K, Conroy SM, Byrne C, Nagata C, Ursin G, Vachon CM, Yaffe MJ, Pagano I, Maskarinec G (2012) Mammographic density, parity and age at first birth, and risk of breast cancer: an analysis of four case–control studies. Breast Cancer Res Treat 132:1163–1171

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yaghjyan L, Mahoney MC, Succop P, Wones R, Buckholz J, Pinney SM (2012) Relationship between breast cancer risk factors and mammographic breast density in the Fernald Community Cohort. Br J Cancer 106(5):996–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Anwar T, Kleer CG (2013) Tissue-based identification of stem cells and epithelial-to-mesenchymal transition in breast cancer. Hum Pathol 44:1457–1464

    Article  PubMed  PubMed Central  Google Scholar 

  43. Collins LC, Marotti J, Baer HJ, Deitz AC, Colditz GA, Tamimi RM (2008) Comparison of estrogen receptor assay results from pathology reports with results from central laboratory testing: implications for population-based studies of breast cancer. J Natl Cancer Inst 100:218–221

    Article  CAS  PubMed  Google Scholar 

  44. Ma H, Wang Y, Sullivan-Halley J, Weiss L, Burkman RT, Simon MS, Malone KE, Strom BL, Ursin G, Marchbanks PA, McDonald JA, Spirtas R, Press MF, Bernstein L (2009) Breast cancer receptor status: do results from a centralized pathology laboratory agree with SEER registry reports? Cancer Epidemiol Biomark Prev 18:2214–2220

    Article  CAS  Google Scholar 

  45. Ahern TP, Beck AH, Rosner BA, Glass B, Frieling G, Collins LC, Tamimi RM (2017) Continuous measurement of breast tumour hormone receptor expression: a comparison of two computational pathology platforms. J Clin Pathol 70(5):428–434

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the University of Florida Cancer Center through the Florida Consortium of National Cancer Institute Centers Program at the University of Florida (Bridge Funding to L.Y.); and Mayo Clinic Breast SPORE (NCI P50 CA116201) and National Cancer Institute (R01 CA128931; R01 CA140286). The authors would like to thank Ms. Elaine Dooley for performing immunohistochemical analyses for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lusine Yaghjyan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

This study was compliant with the U.S. Health Insurance Portability and Accountability Act and was approved by the Mayo Clinic Institutional Review Board (IRB) which issued a waiver of informed consent as well as the University of Florida IRBs. The Mayo Clinic patients provided a general authorization for use of medical record information for research purposes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghjyan, L., Esnakula, A.K., Scott, C.G. et al. Associations of mammographic breast density with breast stem cell marker-defined breast cancer subtypes. Cancer Causes Control 30, 1103–1111 (2019). https://doi.org/10.1007/s10552-019-01207-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-019-01207-w

Keywords

Navigation