Cancer Causes & Control

, Volume 26, Issue 10, pp 1375–1392 | Cite as

Organochlorine pesticides and prostate cancer, Is there an association? A meta-analysis of epidemiological evidence

  • Anne-Mary Lewis-Mikhael
  • Rocío Olmedo-Requena
  • Virginia Martínez-Ruiz
  • Aurora Bueno-Cavanillas
  • José Juan Jiménez-Moleón
Review article



The results of epidemiological studies about exposure to organochlorine pesticides (OCPs) and risk of prostate cancer (PC) are inconclusive. We conducted a meta-analysis to evaluate the association between exposure to specific OCPs and PC.


We searched PubMed, Scopus, and Web of science databases for case–control and cohort studies published till March 2015 that provided data about exposure to OCPs and PC. We also contacted authors and hand-searched references of the included articles. We calculated pooled estimates using random effects model and explored heterogeneity between studies.


We systematically reviewed 15 articles and based our meta-analysis on 10 articles covering nine case–control studies and a large prospective cohort study. Pooled estimates of PC for highest versus lowest exposed category to p,p′-DDE was 1.02 (0.69–1.35), I 2 = 12.7 %, p = 0.333, trans-nonachlor, 0.88 (0.45–1.31), I 2 = 0.00 %, p = 0.892, oxychlordane, 0.91 (0.46–1.35), hexachlorobenzene, 0.88 (0.18–1.57), I 2 = 36.0 %, p = 0.210 from combining results of studies that applied serum OCPs measurements among the general population. For DDT, stratifying studies by exposed population revealed homogeneity, pooled estimate for serum level measurement for the highest exposed versus the lowest exposed of the general population was 0.81 (0.95–1.26), I 2 = 0.00 %, p = 0.400, and for occupational exposure 1.30 (0.94–1.67), I 2 = 13.4 %, p = 0.315. A positive but also insignificant association was obtained for pooling results for high exposure to lindane among farmers and pesticide applicators, 1.56 (0.82–2.29), I 2 = 41.7 %, p = 0.180.


The existing epidemiological data do not support the hypothesis that exposure to specific OCPs is associated with an increased incidence of PC in the general population.


Organochlorine pesticides Prostate cancer Meta-analysis Epidemiology 



Agricultural Health Study


Confidence interval




Environmental Protection Agency






International Agency of Research on Cancer


Job exposure matrix


Newcastle–Ottawa Scale




Organochlorine pesticides


Odds ratio




Prostate cancer


Relative risk


Standard error


Standardized incidence ratio



This paper is part of the Ph.D. work of A.M.L.M. It presents independent research commissioned by the European Union and reflects the view only of the author. The commission cannot be held responsible for any use which may be made of the information contained therein.

Author contribution

A.M.L.M. conducted the searches, reviewed the papers, interpreted the analysis and contributed to the writing of the manuscript. A.B.C. contributed to the design of the study, reviewing of the papers, interpretation of the analysis, and writing of the manuscript. R.O.R. contributed to the searching and reviewing of the papers. V.M.R. contributed to the reviewing of the papers. J.J.J.M. designed the search strategy, contributed to the reviewing of the papers, interpretation of the analysis, and the writing of the manuscript. All authors have read and approved the submission of the manuscript.


This project has been funded with support of the European Commission (Erasmus Mundus scholarship).

Compliance with ethical standard

Conflict of interest



  1. 1.
    Yang L, Li X, Zhang P, Melcer ME, Wu Y, Jans U (2012) Concentrations of DDTs and dieldrin in Long Island Sound sediment. J Environ Monit 14:878–885CrossRefPubMedGoogle Scholar
  2. 2.
    Park MJ, Lee SK, Yang JY et al (2005) Distribution of organochlorines and PCB congeners in Korean human tissues. Arch Pharm Res 28:829–838CrossRefPubMedGoogle Scholar
  3. 3.
    Jaga K, Dharmani C (2003) Global surveillance of DDT and DDE levels in human tissues. Int J Occup Med Environ Health 16:7–20PubMedGoogle Scholar
  4. 4.
    Jakszyn P, Goni F, Etxeandia A et al (2009) Serum levels of organochlorine pesticides in healthy adults from five regions of Spain. Chemosphere 76:1518–1524CrossRefPubMedGoogle Scholar
  5. 5.
    IARC (2012) IARC monographs on the evaluation of carcinogenic risks to humans Volume 100F. A review of human carcinogens: chemical agents and related occupations. International Association for Research on Cancer (IARC), LyonGoogle Scholar
  6. 6.
    De Coster S, van Larebeke N (2012) Endocrine-disrupting chemicals: associated disorders and mechanisms of action. J Environ Pub Health 713696Google Scholar
  7. 7.
    McKinlay R, Plant JA, Bell JN, Voulvoulis N (2008) Endocrine disrupting pesticides: implications for risk assessment. Environ Int 34:168–183CrossRefPubMedGoogle Scholar
  8. 8.
    Landau-Ossondo M, Rabia N, Jos-Pelage J et al (2009) Why pesticides could be a common cause of prostate and breast cancers in the French Caribbean Island, Martinique. An overview on key mechanisms of pesticide-induced cancer. Biomed Pharmacother 63:383–395CrossRefPubMedGoogle Scholar
  9. 9.
    Hu WY, Shi GB, Hu DP, Nelles JL, Prins GS (2012) Actions of estrogens and endocrine disrupting chemicals on human prostate stem/progenitor cells and prostate cancer risk. Mol Cell Endocrinol 354:63–73CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Blair A, Zahm SH, Pearce NE, Heineman EF, Fraumeni JF Jr (1992) Clues to cancer etiology from studies of farmers. Scand J Work Environ Health 18:209–215CrossRefPubMedGoogle Scholar
  11. 11.
    Buranatrevedh S, Roy D (2001) Occupational exposure to endocrine-disrupting pesticides and the potential for developing hormonal cancers. J Environ Health 64:17–29PubMedGoogle Scholar
  12. 12.
    Mallick S, Blanchet P, Multigner L (2005) Prostate cancer incidence in guadeloupe, a French Caribbean archipelago. Eur Urol 47:769–772CrossRefPubMedGoogle Scholar
  13. 13.
    Vakonaki E, Androutsopoulos VP, Liesivuori J, Tsatsakis AM, Spandidos DA (2013) Pesticides and oncogenic modulation. Toxicology 307:42–45CrossRefPubMedGoogle Scholar
  14. 14.
    Shah S, Hess-Wilson JK, Webb S et al (2008) 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene stimulates androgen independence in prostate cancer cells through combinatorial activation of mutant androgen receptor and mitogen-activated protein kinase pathways. Mol Cancer Res 6:1507–1520CrossRefPubMedGoogle Scholar
  15. 15.
    Ralph JL, Orgebin-Crist MC, Lareyre JJ, Nelson CC (2003) Disruption of androgen regulation in the prostate by the environmental contaminant HCB. Environ Health Perspect 111:461–466CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Barlow SM (2005) Agricultural chemicals and endocrine-mediated chronic toxicity or carcinogenicity. Scand J Work Environ Health 31(Suppl 1):141–145PubMedGoogle Scholar
  17. 17.
    Tsuda H, Naito A, Kim CK, Fukamachi K, Nomoto H, Moore MA (2003) Carcinogenesis and its modification by environmental endocrine disruptors: in vivo experimental and epidemiological findings. Jpn J Clin Oncol 33:259–270CrossRefPubMedGoogle Scholar
  18. 18.
    Van Der Gulden JW, Vogelzang PF (1996) Farmers at risk for prostate cancer. Br J Urol 77:6–14CrossRefGoogle Scholar
  19. 19.
    Meyer TE, Coker AL, Sanderson M, Symanski E (2007) A case–control study of farming and prostate cancer in African-American and Caucasian men. Occup Environ Med 64:155–160CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Forastiere F, Quercia A, Miceli M et al (1993) Cancer among farmers in central Italy. Scand J Work Environ Health 19:382–389CrossRefPubMedGoogle Scholar
  21. 21.
    Zeegers MP, Friesema IH, Goldbohm RA, van den Brandt PA (2004) A prospective study of occupation and prostate cancer risk. J Occup Environ Med 46:271–279CrossRefPubMedGoogle Scholar
  22. 22.
    Subahir MN, Shah SA, Zainuddin ZM (2009) Risk factors for prostate cancer in Universiti Kebangsaan Malaysia Medical Centre: a case–control study. Asian Pac J Cancer Prev 10:1015–1020PubMedGoogle Scholar
  23. 23.
    Fleming LE, Bean JA, Rudolph M, Hamilton K (1999) Cancer incidence in a cohort of licensed pesticide applicators in Florida. J Occup Environ Med 41:279–288CrossRefPubMedGoogle Scholar
  24. 24.
    Dich J, Wiklund K (1998) Prostate cancer in pesticide applicators in Swedish agriculture. Prostate 34:100–112CrossRefPubMedGoogle Scholar
  25. 25.
    Acquavella J, Olsen G, Cole P et al (1998) Cancer among farmers: a meta-analysis. Ann Epidemiol 8:64–74CrossRefPubMedGoogle Scholar
  26. 26.
    Keller-Byrne JE, Khuder SA, Schaub EA (1997) Meta-analyses of prostate cancer and farming. Am J Ind Med 31:580–586CrossRefPubMedGoogle Scholar
  27. 27.
    Van Maele-Fabry G, Willems JL (2003) Occupation related pesticide exposure and cancer of the prostate: a meta-analysis. Occup Environ Med 60:634–642CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Van Maele-Fabry G, Willems JL (2004) Prostate cancer among pesticide applicators: a meta-analysis. Int Arch Occup Environ Health 77:559–570CrossRefPubMedGoogle Scholar
  29. 29.
    Wells G, Shea B, O’Connell D, Peterson J, Welch V et al (2013) The Newcastle–Ottawa scale (NOS) for assessing the quality of non-randomized studies in meta-analysis. Accessed 10/09/2014
  30. 30.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Borenstein M, Hedges LV, Higgins J, Rothstein HR (2010) A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods 1:97–111Google Scholar
  32. 32.
    Aronson KJ, Wilson JW, Hamel M et al (2010) Plasma organochlorine levels and prostate cancer risk. J Expo Sci Environ Epidemiol 20:434–445CrossRefPubMedGoogle Scholar
  33. 33.
    Band PR, Abanto Z, Bert J et al (2011) Prostate cancer risk and exposure to pesticides in British Columbia farmers. Prostate 71:168–183CrossRefPubMedGoogle Scholar
  34. 34.
    Cockburn M, Mills P, Zhang X, Zadnick J, Goldberg D, Ritz B (2011) Prostate cancer and ambient pesticide exposure in agriculturally intensive areas in California. Am J Epidemiol 173:1280–1288CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Fritschi L, Glass DC, Tabrizi JS, Leavy JE, Ambrosini GL (2007) Occupational risk factors for prostate cancer and benign prostatic hyperplasia: a case–control study in Western Australia. Occup Environ Med 64:60–65CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Hardell L, Andersson SO, Carlberg M et al (2006) Adipose tissue concentrations of persistent organic pollutants and the risk of prostate cancer. J Occup Environ Med 48:700–707CrossRefPubMedGoogle Scholar
  37. 37.
    Koutros S, Beane Freeman LE, Lubin JH et al (2013) Risk of total and aggressive prostate cancer and pesticide use in the Agricultural Health Study. Am J Epidemiol 177:59–74CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Mills PK, Yang R (2003) Prostate cancer risk in California farm workers. J Occup Environ Med 45:249–258CrossRefPubMedGoogle Scholar
  39. 39.
    Ritchie JM, Vial SL, Fuortes LJ, Guo H, Reedy VE, Smith EM (2003) Organochlorines and risk of prostate cancer. J Occup Environ Med 45:692–702CrossRefPubMedGoogle Scholar
  40. 40.
    Sawada N, Iwasaki M, Inoue M et al (2010) Plasma organochlorines and subsequent risk of prostate cancer in Japanese men: a nested case–control study. Environ Health Perspect 118:659–665CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Settimi L, Masina A, Andrion A, Axelson O (2003) Prostate cancer and exposure to pesticides in agricultural settings. Int J Cancer 104:458–461CrossRefPubMedGoogle Scholar
  42. 42.
    Purdue MP, Hoppin JA, Blair A, Dosemeci M, Alavanja MC (2007) Occupational exposure to organochlorine insecticides and cancer incidence in the Agricultural Health Study. Int J Cancer 120:642–649CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Alavanja MC, Samanic C, Dosemeci M et al (2003) Use of agricultural pesticides and prostate cancer risk in the Agricultural Health Study cohort. Am J Epidemiol 157:800–814CrossRefPubMedGoogle Scholar
  44. 44.
    Emeville E, Giusti A, Coumoul X, Thomé JP, Blanchet P, Multigner L (2014) Associations of plasma concentrations of dichlorodiphenyldichloroethylene and polychlorinated biphenyls with prostate cancer: a case–control study in guadeloupe (French West Indies). Environ Health Perspect. doi: 10.1289/ehp.1408407
  45. 45.
    Koutros S, Langseth H, Grimsrud TK, Barr DB, Vermeulen R, Portengen L, Wacholder S, Beane Freeman LE, Blair A, Hayes RB, Rothmann N, Engel LS (2015) Prediagnostic serum organochlorine concentrations and metastatic prostate cancer: a nested case–control study in the Norwegian Janus Serum Bank Cohort. Environ Health Perspect. doi: 10.1289/ehp.1408245 PubMedGoogle Scholar
  46. 46.
    Multigner L (2008) Chlordecone and cancer in French-West Indies. Rev Epidemiol Sante Publique 56:233–234CrossRefPubMedGoogle Scholar
  47. 47.
    Zhong Y, Rafnsson V (1996) Cancer incidence among Icelandic pesticide users. Int J Epidemiol 25:1117–1124CrossRefPubMedGoogle Scholar
  48. 48.
    Ragin C, Davis-Reyes B, Tadesse H et al (2013) Farming, reported pesticide use, and prostate cancer. Am J Mens Health 7:102–109CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Clapp RW, Jacobs MM, Loechler EL (2008) Environmental and occupational causes of cancer: new evidence 2005–2007. Rev Environ Health 23:1–37CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Bassil KL, Vakil C, Sanborn M, Cole DC, Kaur JS, Kerr KJ (2007) Cancer health effects of pesticides: systematic review. Can Fam Physician 53:1704–1711PubMedCentralPubMedGoogle Scholar
  51. 51.
    Blair A, Zahm SH (1995) Agricultural exposures and cancer. Environ Health Perspect 103(Suppl 8):205–208CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Blair A, Freeman LB (2009) Epidemiologic studies in agricultural populations: observations and future directions. J Agromedicine 14:125–131CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Prins GS (2008) Endocrine disruptors and prostate cancer risk. Endocr Relat Cancer 15:649–656CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Rogan WJ, Chen A (2005) Health risks and benefits of bis(4-chlorophenyl)-1,1,1-trichloroethane (DDT). Lancet 366:763–773CrossRefPubMedGoogle Scholar
  55. 55.
    Wigle DT, Turner MC, Gomes J, Parent ME (2008) Role of hormonal and other factors in human prostate cancer. J Toxicol Environ Health B Crit Rev 11:242–259CrossRefPubMedGoogle Scholar
  56. 56.
    Diamanti-Kandarakis E, Bourguignon JP, Giudice LC et al (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30:293–342CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Lo S, King I, Allera A, Klingmuller D (2007) Effects of various pesticides on human 5alpha-reductase activity in prostate and LNCaP cells. Toxicol In Vitro 21:502–508CrossRefPubMedGoogle Scholar
  58. 58.
    Wong PS, Matsumura F (2007) Promotion of breast cancer by beta-hexachlorocyclohexane in MCF10AT1 cells and MMTV-neu mice. BMC Cancer 7:130CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Tessier DM, Matsumura F (2001) Increased ErbB-2 tyrosine kinase activity, MAPK phosphorylation, and cell proliferation in the prostate cancer cell line LNCaP following treatment by select pesticides. Toxicol Sci 60:38–43CrossRefPubMedGoogle Scholar
  60. 60.
    Lopez-Cervantes M, Torres-Sanchez L, Tobias A, Lopez-Carrillo L (2004) Dichlorodiphenyldichloroethane burden and breast cancer risk: a meta-analysis of the epidemiologic evidence. Environ Health Perspect 112:207–214CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Beard J (2006) DDT and human health. Sci Total Environ 355:78–89CrossRefPubMedGoogle Scholar
  62. 62.
    Kumar V, Yadav CS, Singh S et al (2010) CYP 1A1 polymorphism and organochlorine pesticides levels in the etiology of prostate cancer. Chemosphere 81:464–468CrossRefPubMedGoogle Scholar
  63. 63.
    Nieuwenhuijsen MJ (2010) Exposure assessment in occupational and environmental epidemiology. Oxford University Press, OxfordGoogle Scholar
  64. 64.
    Huang L, Pu Y, Alam S, Birch L, Prins GS (2004) Estrogenic regulation of signaling pathways and homeobox genes during rat prostate development. J Androl 25:330–337PubMedGoogle Scholar
  65. 65.
    Martin OV, Lester JN, Voulvoulis N, Boobis AR (2007) Human health and endocrine disruption: a simple multicriteria framework for the qualitative assessment of end point specific risks in a context of scientific uncertainty. Toxicol Sci 98:332–347CrossRefPubMedGoogle Scholar
  66. 66.
    Carruba G (2007) Estrogen and prostate cancer: an eclipsed truth in an androgen-dominated scenario. J Cell Biochem 102:899–911CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Anne-Mary Lewis-Mikhael
    • 1
    • 2
  • Rocío Olmedo-Requena
    • 1
    • 3
    • 4
  • Virginia Martínez-Ruiz
    • 1
  • Aurora Bueno-Cavanillas
    • 1
    • 3
    • 4
  • José Juan Jiménez-Moleón
    • 1
    • 3
    • 4
  1. 1.Department of Preventive Medicine and Public HealthUniversity of GranadaGranadaSpain
  2. 2.Department of Occupational Health and Industrial Medicine, High Institute of Public HealthAlexandria UniversityAlexandriaEgypt
  3. 3.CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
  4. 4.Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)Servicio Andaluz de Salud/Universidad de GranadaGranadaSpain

Personalised recommendations