Advertisement

Cancer Causes & Control

, Volume 26, Issue 2, pp 179–185 | Cite as

Socioeconomic status and glioblastoma risk: a population-based analysis

  • Alyx B. Porter
  • Daniel H. Lachance
  • Derek R. Johnson
Original paper

Abstract

Purpose

Socioeconomic status (SES) is associated with risk of various cancer types because of correlation between SES and causal factors or increased case ascertainment, or both. Studies evaluating the association between glioblastoma and occupational or SES factors have yielded inconsistent results. We evaluated the association between SES and glioblastoma risk using a large, population-based cancer registry dataset.

Methods

Data of the Surveillance, Epidemiology, and End Results Program were used to evaluate the impact of SES on glioblastoma risk. SES was divided into quintiles on the basis of census tract of residence. Census tracts are small, geographically defined areas with relatively homogeneous population characteristics.

Results

Higher SES was strongly associated with increased risk of glioblastoma (p < .001). Relative to persons living in census tracts of the lowest SES quintile, the highest SES quintile had a rate ratio of 1.45 (95 % CI 1.39–1.51) (p < .001). Similar associations were seen in population subgroups defined by age, sex, and race.

Conclusions

The strong association between higher SES and greater glioblastoma risk is unlikely to represent an ascertainment effect because glioblastoma is rapidly progressive and ultimately fatal. A number of previously proposed glioma risk factors may be correlated with SES, including atopy and allergy rates, cellular telephone use, and body morphometric measures. Further research is needed to define the mechanism of this association.

Keywords

Glioblastoma Incidence Risk factor Socioeconomic status 

Abbreviations

BMI

Body mass index

SEER

Surveillance, Epidemiology, and End Results

SES

Socioeconomic status

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sadetzki S, Chetrit A, Freedman L, Stovall M, Modan B, Novikov I (2005) Long-term follow-up for brain tumor development after childhood exposure to ionizing radiation for tinea capitis [published correction appears in Radiat Res. 2005; 164: 234]. Radiat Res 163:424–432PubMedCrossRefGoogle Scholar
  2. 2.
    Frei P, Poulsen AH, Johansen C, Olsen JH, Steding-Jessen M, Schuz J (2011) Use of mobile phones and risk of brain tumours: update of Danish cohort study. BMJ 343:d6387PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Olin RG, Ahlbom A, Lindberg-Navier I, Norell SE, Spannare B (1987) Occupational factors associated with astrocytomas: a case–control study. Am J Ind Med 11(6):615–625PubMedCrossRefGoogle Scholar
  4. 4.
    Carozza SE, Wrensch M, Miike R et al (2000) Occupation and adult gliomas. Am J Epidemiol 152(9):838–846PubMedCrossRefGoogle Scholar
  5. 5.
    Baquet CR, Horm JW, Gibbs T, Greenwald P (1991) Socioeconomic factors and cancer incidence among blacks and whites. J Natl Cancer Inst 83(8):551–557PubMedCrossRefGoogle Scholar
  6. 6.
    Clegg LX, Reichman ME, Miller BA et al (2009) Impact of socioeconomic status on cancer incidence and stage at diagnosis: selected findings from the surveillance, epidemiology, and end results: National Longitudinal Mortality Study. Cancer Causes Control 20(4):417–435PubMedCrossRefGoogle Scholar
  7. 7.
    Diez-Roux AV, Kiefe CI, Jacobs DR Jr et al (2001) Area characteristics and individual-level socioeconomic position indicators in three population-based epidemiologic studies [published correction appears in Ann Epidemiol. 2001; 30: 924]. Ann Epidemiol 11:395–405PubMedCrossRefGoogle Scholar
  8. 8.
    Krieger N, Quesenberry C Jr, Peng T et al (1999) Social class, race/ethnicity, and incidence of breast, cervix, colon, lung, and prostate cancer among Asian, Black, Hispanic, and White residents of the San Francisco Bay Area, 1988–92 (United States). Cancer Causes Control 10(6):525–537PubMedCrossRefGoogle Scholar
  9. 9.
    Surveillance, Epidemiology, and End Results (SEER) Program and N.S. (www.seer.cancer.gov) SEER*Stat Database: incidence—SEER 18 Regs excluding AK and Louisiana Custom Data (with 2000 census tract index fields)
  10. 10.
    Plascak JJ, Fisher JL (2013) Area-based socioeconomic position and adult glioma: a hierarchical analysis of surveillance epidemiology and end results data. PLoS One 8(4):e60910PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Yu M, Tatalovich Z, Gibson JT, Cronin KA (2014) Using a composite index of socioeconomic status to investigate health disparities while protecting the confidentiality of cancer registry data. Cancer Causes Control 25(1):81–92PubMedCrossRefGoogle Scholar
  12. 12.
    Yost K, Perkins C, Cohen R, Morris C, Wright W (2001) Socioeconomic status and breast cancer incidence in California for different race/ethnic groups. Cancer Causes Control 12(8):703–711PubMedCrossRefGoogle Scholar
  13. 13.
    Surveillance Research Program, N.C.I.S.S.s.s.c.g.s.vGoogle Scholar
  14. 14.
    Deorah S, Lynch CF, Sibenaller ZA, Ryken TC (2006) Trends in brain cancer incidence and survival in the United States: Surveillance, Epidemiology, and End Results Program, 1973 to 2001. Neurosurg Focus 20(4):E1PubMedCrossRefGoogle Scholar
  15. 15.
    Hess KR, Broglio KR, Bondy ML (2004) Adult glioma incidence trends in the United States, 1977–2000. Cancer 101(10):2293–2299PubMedCrossRefGoogle Scholar
  16. 16.
    Demers PA, Vaughan TL, Schommer RR (1991) Occupation, socioeconomic status, and brain tumor mortality: a death certificate-based case–control study. J Occup Med 33(9):1001–1006PubMedGoogle Scholar
  17. 17.
    INTERPHONE Study Group (2012) Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case–control study [published correction appears in Int J Epidemiol. 2012; 41: 328]. Int J Epidemiol 2010(39):675–694Google Scholar
  18. 18.
    Aydin D, Feychting M, Schuz J et al (2011) Mobile phone use and brain tumors in children and adolescents: a multicenter case–control study. J Natl Cancer Inst 103(16):1264–1276PubMedCrossRefGoogle Scholar
  19. 19.
    Calderon C, Addison D, Mee T et al (2014) Assessment of extremely low frequency magnetic field exposure from GSM mobile phones. Bioelectromagnetics 35(3):210–221PubMedCrossRefGoogle Scholar
  20. 20.
    Baglietto L, Giles GG, English DR, Karahalios A, Hopper JL, Severi G (2011) Alcohol consumption and risk of glioblastoma: evidence from the Melbourne Collaborative Cohort Study. Int J Cancer 128(8):1929–1934PubMedCrossRefGoogle Scholar
  21. 21.
    Galeone C, Malerba S, Rota M et al (2013) A meta-analysis of alcohol consumption and the risk of brain tumours. Ann Oncol 24(2):514–523PubMedCrossRefGoogle Scholar
  22. 22.
    Mandelzweig L, Novikov I, Sadetzki S (2009) Smoking and risk of glioma: a meta-analysis. Cancer Causes Control 20(10):1927–1938PubMedCrossRefGoogle Scholar
  23. 23.
    Sheweita SA, Sheikh BY (2011) Can dietary antioxidants reduce the incidence of brain tumors? Curr Drug Metab 12(6):587–593PubMedCrossRefGoogle Scholar
  24. 24.
    Dubrow R, Darefsky AS, Freedman ND, Hollenbeck AR, Sinha R (2012) Coffee, tea, soda, and caffeine intake in relation to risk of adult glioma in the NIH-AARP Diet and Health Study. Cancer Causes Control 23(5):757–768PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Michaud DS, Gallo V, Schlehofer B et al (2010) Coffee and tea intake and risk of brain tumors in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort study. Am J Clin Nutr 92(5):1145–1150PubMedCrossRefGoogle Scholar
  26. 26.
    Malerba S, Galeone C, Pelucchi C et al (2013) A meta-analysis of coffee and tea consumption and the risk of glioma in adults. Cancer Causes Control 24(2):267–276PubMedCrossRefGoogle Scholar
  27. 27.
    Linos E, Raine T, Alonso A, Michaud D (2007) Atopy and risk of brain tumors: a meta-analysis. J Natl Cancer Inst 99(20):1544–1550PubMedCrossRefGoogle Scholar
  28. 28.
    Wigertz A, Lonn S, Schwartzbaum J et al (2007) Allergic conditions and brain tumor risk. Am J Epidemiol 166(8):941–950PubMedCrossRefGoogle Scholar
  29. 29.
    Schwartzbaum J, Ding B, Johannesen TB et al (2012) Association between prediagnostic IgE levels and risk of glioma. J Natl Cancer Inst 104(16):1251–1259PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Anic GM, Madden MH, Sincich K et al (2013) Early life exposures and the risk of adult glioma. Eur J Epidemiol 28(9):753–758PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Amirian E, Scheurer ME, Bondy ML (2010) The association between birth order, sibship size and glioma development in adulthood. Int J Cancer 126(11):2752–2756PubMedCentralPubMedGoogle Scholar
  32. 32.
    Chen C, Xu T, Chen J et al (2011) Allergy and risk of glioma: a meta-analysis. Eur J Neurol 18(3):387–395PubMedCrossRefGoogle Scholar
  33. 33.
    Berg-Beckhoff G, Schuz J, Blettner M et al (2009) History of allergic disease and epilepsy and risk of glioma and meningioma (INTERPHONE study group, Germany). Eur J Epidemiol 24(8):433–440PubMedCrossRefGoogle Scholar
  34. 34.
    Liu AH, Jaramillo R, Sicherer SH et al (2010) National prevalence and risk factors for food allergy and relationship to asthma: results from the National Health and Nutrition Examination Survey 2005–2006. J Allergy Clin Immunol 126(4):798–806PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Wiedmann M, Brunborg C, Lindemann K et al (2013) Body mass index and the risk of meningioma, glioma and schwannoma in a large prospective cohort study (The HUNT Study). Br J Cancer 109(1):289–294PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Little RB, Madden MH, Thompson RC et al (2013) Anthropometric factors in relation to risk of glioma. Cancer Causes Control 24(5):1025–1031PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Moore SC, Rajaraman P, Dubrow R et al (2009) Height, body mass index, and physical activity in relation to glioma risk. Cancer Res 69(21):8349–8355PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Kitahara CM, Wang SS, Melin BS et al (2012) Association between adult height, genetic susceptibility and risk of glioma. Int J Epidemiol 41(4):1075–1085PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Benson VS, Pirie K, Green J, Casabonne D, Beral V, Million Women Study Collaborators (2008) Lifestyle factors and primary glioma and meningioma tumours in the Million Women Study cohort. Br J Cancer 99(1):185–190PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Fisher JL, Palmisano S, Schwartzbaum JA, Svensson T, Lonn S (2014) Comorbid conditions associated with glioblastoma. J Neurooncol 116(3):585–591PubMedCrossRefGoogle Scholar
  41. 41.
    Houben MP, Coebergh JW, Herings RM et al (2006) The association between antihypertensive drugs and glioma. Br J Cancer 94(5):752–756PubMedCentralPubMedGoogle Scholar
  42. 42.
    Gaist D, Garcia-Rodriguez LA, Sorensen HT, Hallas J, Friis S (2013) Use of low-dose aspirin and non-aspirin nonsteroidal anti-inflammatory drugs and risk of glioma: a case–control study. Br J Cancer 108(5):1189–1194PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Daugherty SE, Moore SC, Pfeiffer RM et al (2011) Nonsteroidal anti-inflammatory drugs and glioma in the NIH-AARP Diet and Health Study cohort. Cancer Prev Res (Phila) 4(12):2027–2034CrossRefGoogle Scholar
  44. 44.
    Samkange-Zeeb F, Schlehofer B, Schuz J et al (2010) Occupation and risk of glioma, meningioma and acoustic neuroma: results from a German case–control study (INTERPHONE study group, Germany). Cancer Epidemiol 34(1):55–61PubMedCrossRefGoogle Scholar
  45. 45.
    Schlehofer B, Hettinger I, Ryan P et al (2005) Occupational risk factors for low grade and high grade glioma: results from an international case–control study of adult brain tumours. Int J Cancer 113(1):116–125PubMedCrossRefGoogle Scholar
  46. 46.
    Harrison RA, Haque AU, Roseman JM, Soong SJ (1998) Socioeconomic characteristics and melanoma incidence. Ann Epidemiol 8(5):327–333PubMedCrossRefGoogle Scholar
  47. 47.
    Wrensch M, Jenkins RB, Chang JS et al (2009) Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet 41(8):905–908PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Lachance DH, Yang P, Johnson DR et al (2011) Associations of high-grade glioma with glioma risk alleles and histories of allergy and smoking. Am J Epidemiol 174(5):574–581PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Harden KP, Turkheimer E, Loehlin JC (2007) Genotype by environment interaction in adolescents’ cognitive aptitude. Behav Genet 37(2):273–283PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Merrill RM, Dearden KA (2004) How representative are the surveillance, epidemiology, and end results (SEER) program cancer data of the United States? Cancer Causes Control 15(10):1027–1034PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alyx B. Porter
    • 1
  • Daniel H. Lachance
    • 2
  • Derek R. Johnson
    • 3
  1. 1.Division of Hematology and Medical Oncology, Department of NeurologyMayo ClinicScottsdaleUSA
  2. 2.Division of Clinical Biochemistry and Immunology, Department of NeurologyMayo ClinicRochesterUSA
  3. 3.Division of Medical Oncology, Department of NeurologyMayo ClinicRochesterUSA

Personalised recommendations