Advertisement

Cancer Causes & Control

, Volume 25, Issue 8, pp 969–976 | Cite as

Intraindividual variability over time in plasma biomarkers of inflammation and effects of long-term storage

  • Sheetal Hardikar
  • Xiaoling Song
  • Mario Kratz
  • Garnet L. Anderson
  • Patricia L. Blount
  • Brian J. Reid
  • Thomas L. Vaughan
  • Emily White
Original paper

Abstract

Purpose

Systemic measures of chronic inflammation, often based on a single blood draw, are frequently used to study the associations between inflammation and chronic diseases such as cancer. However, more information is needed on the measurement error in these markers due to laboratory error, within-person variation over time, and long-term storage.

Methods

We investigated the intraindividual variability of inflammation markers C-reactive protein (CRP), interleukin-6 (IL-6), and soluble tumor necrosis factor receptors I and II (sTNFRI and II) in a subsample of the Seattle Barrett’s esophagus study cohort. Two fasting blood samples were collected between 1995 and 2009 from 360 participants on average 1.8 years apart. CRP, IL-6, and sTNF receptor levels were measured by immunonephelometry, ELISA, and multiplex assays, respectively. Intra- and inter-batch coefficients of variation (CV) were estimated using blinded pooled samples within each batch. Intraclass correlations (ICCs) were computed using random effects ANOVA.

Results

Intra- and inter-batch CVs for the pooled plasma aliquots were low (2.4–8.9 %), suggesting little laboratory variability. Reliability over time was excellent for sTNF receptors (ICCsTNF-RI = 0.89, ICCsTNF-RII = 0.85) and fair-to-good for CRP and IL-6 (ICCCRP = 0.55, ICCIL-6 = 0.57). For samples stored for over 13 years, the ICCs for CRP and IL-6 were decreased but those for sTNF receptors were unaffected.

Conclusion

sTNF receptor levels are more stable within person over time than CRP or IL-6. Long-term storage of samples appears to increase the variability of CRP and IL-6 measures, while the reliability of soluble TNF receptor measures was not affected by storage time.

Keywords

ICC CV C-reactive protein Interleukin-6 Soluble tumor necrosis factor receptors 

Notes

Acknowledgments

We thank Tricia Christopherson for project management; Terri Watson for database management; and Christine Karlsen for coordination of patient care.

Financial support

This work was supported by United States National Institutes of Health (Grants P01CA091955, K05CA124911 and R25CA094880). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545PubMedCrossRefGoogle Scholar
  2. 2.
    Il’yasova D, Colbert LH, Harris TB, Newman AB, Bauer DC, Satterfield S, Kritchevsky SB (2005) Circulating levels of inflammatory markers and cancer risk in the health aging and body composition cohort. Cancer Epidemiol Biomarkers Prev 14:2413–2418PubMedCrossRefGoogle Scholar
  3. 3.
    Grote VA, Kaaks R, Nieters A, Tjonneland A, Halkjaer J, Overvad K, Skjelbo Nielsen MR, Boutron-Ruault MC, Clavel-Chapelon F, Racine A, Teucher B, Becker S, Pischon T, Boeing H, Trichopoulou A, Cassapa C, Stratigakou V, Palli D, Krogh V, Tumino R, Vineis P, Panico S, Rodriguez L, Duell EJ, Sanchez MJ, Dorronsoro M, Navarro C, Gurrea AB, Siersema PD, Peeters PH, Ye W, Sund M, Lindkvist B, Johansen D, Khaw KT, Wareham N, Allen NE, Travis RC, Fedirko V, Jenab M, Michaud DS, Chuang SC, Romaguera D, Bueno-de-Mesquita HB, Rohrmann S (2012) Inflammation marker and risk of pancreatic cancer: a nested case-control study within the EPIC cohort. Br J Cancer 106(11):1866–1874. doi: 10.1038/bjc.2012.172 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, Lowe GD, Pepys MB, Gudnason V (2004) C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350:1387–1397PubMedCrossRefGoogle Scholar
  5. 5.
    Emerging Risk Factors Collaboration, Kaptoge S, Di Angelantonio E, Pennells L, Wood AM, White IR, Gao P, Walker M, Thompson A, Sarwar N, Caslake M, Butterworth AS, Amouyel P, Assmann G, Bakker SJ, Barr EL, Barrett-Connor E, Benjamin EJ, Bjorkelund C, Brenner H, Brunner E, Clarke R, Cooper JA, Cremer P, Cushman M, Dagenais GR, D’Agostino RB Sr, Dankner R, Davey-Smith G, Deeg D, Dekker JM, Engstrom G, Folsom AR, Fowkes FG, Gallacher J, Gaziano JM, Giampaoli S, Gillum RF, Hofman A, Howard BV, Ingelsson E, Iso H, Jorgensen T, Kiechl S, Kitamura A, Kiyohara Y, Koenig W, Kromhout D, Kuller LH, Lawlor DA, Meade TW, Nissinen A, Nordestgaard BG, Onat A, Panagiotakos DB, Psaty BM, Rodriguez B, Rosengren A, Salomaa V, Kauhanen J, Salonen JT, Shaffer JA, Shea S, Ford I, Stehouwer CD, Strandberg TE, Tipping RW, Tosetto A, Wassertheil-Smoller S, Wennberg P, Westendorp RG, Whincup PH, Wilhelmsen L, Woodward M, Lowe GD, Wareham NJ, Khaw KT, Sattar N, Packard CJ, Gudnason V, Ridker PM, Pepys MB, Thompson SG, Danesh J (2012) C-reactive protein, fibrinogen, and cardiovascular disease prediction. The New England journal of medicine 367(14):1310–1320. doi: 10.1056/NEJMoa1107477 PubMedCrossRefGoogle Scholar
  6. 6.
    Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286(3):327–334PubMedCrossRefGoogle Scholar
  7. 7.
    Al-Delaimy WK, Jansen EH, Peeters PH, van der Laan JD, van Noord PA, Boshuizen HC, van der Schouw YT, Jenab M, Ferrari P, Bueno-de-Mesquita HB (2006) Reliability of biomarkers of iron status, blood lipids, oxidative stress, vitamin D, C-reactive protein and fructosamine in two Dutch cohorts. Biomarkers 11:370–382PubMedCrossRefGoogle Scholar
  8. 8.
    Block G, Dietrich M, Norkus E, Jensen C, Benowitz NL, Morrow JD, Hudes M, Packer L (2006) Intraindividual variability of plasma antioxidants, markers of oxidative stress, C-reactive protein, cotinine, and other biomarkers. Epidemiology 17:404–412PubMedCrossRefGoogle Scholar
  9. 9.
    Cava F, Gonzalez C, Pascual MJ, Navajo JA, Gonzalez-Buitrago JM (2000) Biological variation of interleukin 6 (IL-6) and soluble interleukin 2 receptor (sIL2R) in serum of healthy individuals. Cytokine 12(9):1423–1425. doi: 10.1006/cyto.2000.0714 PubMedCrossRefGoogle Scholar
  10. 10.
    Clendenen TV, Arslan AA, Lokshin AE, Idahl A, Hallmans G, Koenig KL, Marrangoni AM, Nolen BM, Ohlson N, Zeleniuch-Jacquotte A, Lundin E (2010) Temporal reliability of cytokines and growth factors in EDTA plasma. BMC Res Notes 3:302. doi: 10.1186/1756-0500-3-302 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    DeGoma EM, French B, Dunbar RL, Allison MA, Mohler ER 3rd, Budoff MJ (2012) Intraindividual variability of C-reactive protein: the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 224(1):274–279. doi: 10.1016/j.atherosclerosis.2012.07.017 PubMedCrossRefGoogle Scholar
  12. 12.
    Epstein MM, Breen EC, Magpantay L, Detels R, Lepone L, Penugonda S, Bream JH, Jacobson LP, Martinez-Maza O, Birmann BM (2013) Temporal stability of serum concentrations of cytokines and soluble receptors measured across two years in low-risk HIV-seronegative men. Cancer Epidemiol Biomarkers Prev 22(11):2009–2015. doi: 10.1158/1055-9965.EPI-13-0379 PubMedCrossRefGoogle Scholar
  13. 13.
    Gonzalez C, Cava F, Ayllon A, Guevara P, Navajo JA, Gonzalez-Buitrago JM (2001) Biological variation of interleukin-1beta, interleukin-8 and tumor necrosis factor-alpha in serum of healthy individuals. Clinical Chem Lab Med 39(9):836–841. doi: 10.1515/CCLM.2001.139 CrossRefGoogle Scholar
  14. 14.
    Gu Y, Zeleniuch-Jacquotte A, Linkov F, Koenig KL, Liu M, Velikokhatnaya L, Shore RE, Marrangoni A, Toniolo P, Lokshin AE, Arslan AA (2009) Reproducibility of serum cytokines and growth factors. Cytokine 45:44–49PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Ho GY, Xue XN, Burk RD, Kaplan RC, Cornell E, Cushman M (2005) Variability of serum levels of tumor necrosis factor-alpha, interleukin 6, and soluble interleukin 6 receptor over 2 years in young women. Cytokine 30:1–6PubMedCrossRefGoogle Scholar
  16. 16.
    Hofmann JN, Yu K, Bagni RK, Lan Q, Rothman N, Purdue MP (2011) Intra-individual variability over time in serum cytokine levels among participants in the prostate, lung, colorectal, and ovarian cancer screening trial. Cytokine 56(2):145–148. doi: 10.1016/j.cyto.2011.06.012 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Kayaba K, Ishikawa S, Gotoh T, Nago N, Kajii E, Nakamura Y, Kario K (2000) Five-year intra-individual variability in C-reactive protein levels in a Japanese population-based study: the Jichi Medical School Cohort Study at Yamato, 1993–1998. Jpn Circ J 64(4):303–308PubMedCrossRefGoogle Scholar
  18. 18.
    Lee SA, Kallianpur A, Xiang YB, Wen W, Cai Q, Liu D, Fazio S, Linton MF, Zheng W, Shu XO (2007) Intra-individual variation of plasma adipokine levels and utility of single measurement of these biomarkers in population-based studies. Cancer Epidemiol Biomarkers Prev 16:2464–2470PubMedCrossRefGoogle Scholar
  19. 19.
    Nasermoaddeli A, Sekine M, Kagamimori S (2006) Intra-individual variability of high-sensitivity C-reactive protein: age-related variations over time in Japanese subjects. Circ J 70:559–563PubMedCrossRefGoogle Scholar
  20. 20.
    Navarro SL, Brasky TM, Schwarz Y, Song X, Wang CY, Kristal AR, Kratz M, White E, Lampe JW (2012) Reliability of serum biomarkers of inflammation from repeated measures in healthy individuals. Cancer Epidemiol Biomarkers Prev 21(7):1167–1170. doi: 10.1158/1055-9965.EPI-12-0110 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Ockene IS, Matthews CE, Rifai N, Ridker PM, Reed G, Stanek E (2001) Variability and classification accuracy of serial high-sensitivity C-reactive protein measurements in healthy adults. Clin Chem 47:444–450PubMedGoogle Scholar
  22. 22.
    Rao KM, Pieper CS, Currie MS, Cohen HJ (1994) Variability of plasma IL-6 and crosslinked fibrin dimers over time in community dwelling elderly subjects. Am J Clin Pathol 102:802–805PubMedGoogle Scholar
  23. 23.
    Hardikar S, Onstad L, Blount PL, Odze RD, Reid BJ, Vaughan TL (2013) The role of tobacco, alcohol, and obesity in neoplastic progression to esophageal adenocarcinoma: a prospective study of Barrett’s esophagus. PLoS ONE 8(1):e52192. doi: 10.1371/journal.pone.0052192 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Vaughan TL, Kristal AR, Blount PL, Levine DS, Galipeau PC, Prevo LJ, Sanchez CA, Rabinovitch PS, Reid BJ (2002) Nonsteroidal anti-inflammatory drug use, body mass index, and anthropometry in relation to genetic and flow cytometric abnormalities in Barrett’s esophagus. Cancer Epidemiol Biomarkers Prev 11(8):745–752PubMedGoogle Scholar
  25. 25.
    Ertan A, Younes M (2000) Barrett’s esophagus. Dig Dis Sci 45:1670–1673PubMedCrossRefGoogle Scholar
  26. 26.
    Oh DS, Demeester SR (2010) Pathophysiology and treatment of Barrett’s esophagus. World J Gastroenterol 16:3762–3772PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428PubMedCrossRefGoogle Scholar
  28. 28.
    Rosner B (2000) Fundamentals of biostatistics, vol 5th. Vol book, whole. Duxbury, Pacific GroveGoogle Scholar
  29. 29.
    Thavasu PW, Longhurst S, Joel SP, Slevin ML, Balkwill FR (1992) Measuring cytokine levels in blood. Importance of anticoagulants, processing, and storage conditions. J Immunol Methods 153(1–2):115–124PubMedCrossRefGoogle Scholar
  30. 30.
    Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW (1999) C-Reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 19:972–978PubMedCrossRefGoogle Scholar
  31. 31.
    White E (2011) Measurement error in biomarkers: sources, assessment, and impact on studies. IARC Sci Publ 163:143–161PubMedGoogle Scholar
  32. 32.
    White E, Armstrong BK, Saracci R (2008) Principles of exposure measurement in epidemiology, 2nd edn, vol book, whole. Oxford University Press, USAGoogle Scholar
  33. 33.
    de Jager W, Bourcier K, Rijkers GT, Prakken BJ, Seyfert-Margolis V (2009) Prerequisites for cytokine measurements in clinical trials with multiplex immunoassays. BMC Immunol 10:52PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Tworoger SS, Hankinson SE (2006) Use of biomarkers in epidemiologic studies: minimizing the influence of measurement error in the study design and analysis. Cancer Causes Control 17(7):889–899. doi: 10.1007/s10552-006-0035-5 PubMedCrossRefGoogle Scholar
  35. 35.
    House RV (2001) Cytokine measurement techniques for assessing hypersensitivity. Toxicology 158(1–2):51–58PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sheetal Hardikar
    • 1
    • 2
    • 7
  • Xiaoling Song
    • 1
  • Mario Kratz
    • 1
    • 2
    • 3
  • Garnet L. Anderson
    • 1
    • 4
  • Patricia L. Blount
    • 1
    • 5
    • 6
  • Brian J. Reid
    • 1
    • 3
    • 5
    • 6
  • Thomas L. Vaughan
    • 1
    • 2
  • Emily White
    • 1
    • 2
  1. 1.Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Department of EpidemiologyUniversity of WashingtonSeattleUSA
  3. 3.Department of Genome SciencesUniversity of WashingtonSeattleUSA
  4. 4.Department of BiostatisticsUniversity of WashingtonSeattleUSA
  5. 5.Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleUSA
  6. 6.Department of MedicineUniversity of WashingtonSeattleUSA
  7. 7.SeattleUSA

Personalised recommendations