Cancer Causes & Control

, Volume 25, Issue 6, pp 659–668 | Cite as

Risk of second benign brain tumors among cancer survivors in the surveillance, epidemiology, and end results program

  • Alina Kutsenko
  • Amy Berrington de Gonzalez
  • Rochelle E. Curtis
  • Preetha Rajaraman
Original paper



To assess risk of developing a second benign brain tumor in a nationwide population of cancer survivors.


We evaluated the risk of developing second benign brain tumors among 2,038,074 1-year minimum cancer survivors compared to expected risk in the general population between 1973 and 2007 in nine population-based cancer registries in the NCI’s surveillance, epidemiology, and end results program. Excess risk was estimated using standardized incidence ratios (SIRs) for all second benign brain tumors and specifically for second meningiomas and acoustic neuromas diagnosed during 2004–2008.


1,025 patients were diagnosed with a second primary benign brain tumor, of which second meningiomas composed the majority (n = 745). Statistically significant increases in risk of developing a second meningioma compared to the general population were observed following first cancers of the brain [SIR = 19.82; 95 % confidence interval (CI) 13.88–27.44], other central nervous system (CNS) (SIR = 9.54; CI 3.10–22.27), thyroid (SIR = 2.05; CI 1.47–2.79), prostate (SIR = 1.21; CI 1.02–1.43), and acute lymphocytic leukemia (ALL) (SIR = 42.4; CI 23.18–71.13). Statistically significant decreases in risk were observed following first cancers of the uterine corpus (SIR = 0.63; CI 0.42–0.91) and colon (SIR = 0.56; CI 0.37–0.82). Differences in risk between patients initially treated with radiotherapy versus non-irradiated patients were statistically significant for second meningioma after primary cancers of the brain (p Het < 0.001) and ALL (p Het = 0.02). No statistically significant increased risks were detected for second acoustic neuromas (n = 114) following any first primary tumor.


Risk of second benign brain tumors, particularly meningioma, is increased following first primary cancers of the brain/CNS, thyroid, prostate, and ALL. Radiation exposure likely contributes to these excess risks.


Meningioma Radiotherapy SEER Brain neoplasm Second primary neoplasm 


Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10552_2014_367_MOESM1_ESM.docx (106 kb)
Supplementary material 1 (DOCX 105 kb)
10552_2014_367_MOESM2_ESM.docx (159 kb)
Supplementary material 2 (DOCX 159 kb)


  1. 1.
    Howlader NNA, Krapcho M, Neyman N, Aminou R, Waldron W, Altekruse SF, Kosary CL, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Chen HS, Feuer EJ, Cronin KA, Edwards BK (2011) SEER cancer statistics review, 1975–2008, National Cancer Institute, based on November 2010 SEER data submission
  2. 2.
    Ng AK, Travis LB (2008) Subsequent malignant neoplasms in cancer survivors. Cancer J 14(6):429–434. doi: 10.1097/PPO.0b013e31818d87700130404-200811000-00014 PubMedCrossRefGoogle Scholar
  3. 3.
    Inskip PD (2003) Multiple primary tumors involving cancer of the brain and central nervous system as the first or subsequent cancer. Cancer 98(3):562–570. doi: 10.1002/cncr.11554 PubMedCrossRefGoogle Scholar
  4. 4.
    Kohler BA, Ward E, McCarthy BJ, Schymura MJ, Ries LA, Eheman C, Jemal A, Anderson RN, Ajani UA, Edwards BK (2011) Annual report to the nation on the status of cancer, 1975–2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst 103(9):714–736. doi: 10.1093/jnci/djr077 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Shonka NA, Hsu SH, Yung W, Mahajan A, Prabhu S (2011) Chapter 37. Tumors of the central nervous system. In: Kantarjian HM, Wolff RA, Koller CA (eds) The MD Anderson manual of medical oncology, 2 edn. McGraw-Hill, New YorkGoogle Scholar
  6. 6.
    Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neurooncology 14(Suppl 5):v1–v49. doi: 10.1093/neuonc/nos218 Google Scholar
  7. 7.
    Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neurooncology 4(4):278–299Google Scholar
  8. 8.
    Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, Il’yasova D, Kruchko C, McCarthy BJ, Rajaraman P, Schwartzbaum JA, Sadetzki S, Schlehofer B, Tihan T, Wiemels JL, Wrensch M, Buffler PA (2008) Brain tumor epidemiology: consensus from the brain tumor epidemiology consortium. Cancer 113(7 Suppl):1953–1968. doi: 10.1002/cncr.23741 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Ron E, Modan B, Boice JD Jr, Alfandary E, Stovall M, Chetrit A, Katz L (1988) Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med 319(16):1033–1039. doi: 10.1056/NEJM198810203191601 PubMedCrossRefGoogle Scholar
  10. 10.
    Bondy M, Ligon BL (1996) Epidemiology and etiology of intracranial meningiomas: a review. J Neurooncol 29(3):197–205PubMedCrossRefGoogle Scholar
  11. 11.
    Narod SA, Stiller C, Lenoir GM (1991) An estimate of the heritable fraction of childhood cancer. Br J Cancer 63(6):993–999PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Neglia JP, Meadows AT, Robison LL, Kim TH, Newton WA, Ruymann FB, Sather HN, Hammond GD (1991) Second neoplasms after acute lymphoblastic leukemia in childhood. N Engl J Med 325(19):1330–1336. doi: 10.1056/NEJM199111073251902 PubMedCrossRefGoogle Scholar
  13. 13.
    Cahill KS, Claus EB (2011) Treatment and survival of patients with nonmalignant intracranial meningioma: results from the surveillance, epidemiology, and end results program of the National Cancer Institute. J Neurosurg 115(2):259–267. doi: 10.3171/2011.3.JNS101748 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Surveillance Research Program, National Cancer Institute SEER*Stat software ( version 8.1.2
  15. 15.
    Breslow NE (1984) Elementary methods of cohort analysis. Int J Epidemiol 13(1):112–115PubMedCrossRefGoogle Scholar
  16. 16.
    Berrington de Gonzalez A, Curtis RE, Kry SF, Gilbert E, Lamart S, Berg CD, Stovall M, Ron E (2011) Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. Lancet Oncol 12(4):353–360. doi: 10.1016/S1470-2045(11)70061-4 PubMedCrossRefGoogle Scholar
  17. 17.
    Bhatia S (2005) Cancer survivorship–pediatric issues. Hematology/the Education Program of the American Society of Hematology American Society of Hematology Education Program: 507–515. doi: 10.1182/asheducation-2005.1.507
  18. 18.
    Neglia JP, Robison LL, Stovall M, Liu Y, Packer RJ, Hammond S, Yasui Y, Kasper CE, Mertens AC, Donaldson SS, Meadows AT, Inskip PD (2006) New primary neoplasms of the central nervous system in survivors of childhood cancer: a report from the childhood cancer survivor study. J Natl Cancer Inst 98(21):1528–1537. doi: 10.1093/jnci/djj411 PubMedCrossRefGoogle Scholar
  19. 19.
    Sadetzki S, Chetrit A, Freedman L, Stovall M, Modan B, Novikov I (2005) Long-term follow-up for brain tumor development after childhood exposure to ionizing radiation for tinea capitis. Radiat Res 163(4):424–432PubMedCrossRefGoogle Scholar
  20. 20.
    Taylor AJ, Little MP, Winter DL, Sugden E, Ellison DW, Stiller CA, Stovall M, Frobisher C, Lancashire ER, Reulen RC, Hawkins MM (2010) Population-based risks of CNS tumors in survivors of childhood cancer: the British childhood cancer survivor study. J Clin Oncol 28(36):5287–5293. doi: 10.1200/JCO.2009.27.0090 PubMedCrossRefGoogle Scholar
  21. 21.
    Cardous-Ubbink MC, Heinen RC, Bakker PJ, van den Berg H, Oldenburger F, Caron HN, Voute PA, van Leeuwen FE (2007) Risk of second malignancies in long-term survivors of childhood cancer. Eur J Cancer 43(2):351–362. doi: 10.1016/j.ejca.2006.10.004 PubMedCrossRefGoogle Scholar
  22. 22.
    Inskip PD, Curtis RE (2007) New malignancies following childhood cancer in the United States, 1973–2002. Int J Cancer 121(10):2233–2240. doi: 10.1002/ijc.22827 PubMedCrossRefGoogle Scholar
  23. 23.
    Pui CH, Cheng C, Leung W, Rai SN, Rivera GK, Sandlund JT, Ribeiro RC, Relling MV, Kun LE, Evans WE, Hudson MM (2003) Extended follow-up of long-term survivors of childhood acute lymphoblastic leukemia. N Engl J Med 349(7):640–649. doi: 10.1056/NEJMoa035091349/7/640 PubMedCrossRefGoogle Scholar
  24. 24.
    Shoshan Y, Chernova O, Juen SS, Somerville RP, Israel Z, Barnett GH, Cowell JK (2000) Radiation-induced meningioma: a distinct molecular genetic pattern? J Neuropathol Exp Neurol 59(7):614–620PubMedGoogle Scholar
  25. 25.
    Devarahally SR, Severson RK, Chuba P, Thomas R, Bhambhani K, Hamre MR (2003) Second malignant neoplasms after primary central nervous system malignancies of childhood and adolescence. Pediatr Hematol Oncol 20(8):617–625. doi: 10.1080/08880010390243031 PubMedCrossRefGoogle Scholar
  26. 26.
    Claus EB, Calvocoressi L, Bondy ML, Schildkraut JM, Wiemels JL, Wrensch M Family and personal medical history and risk of meningioma. J Neurosurg doi: 10.3171/2011.6.JNS11129
  27. 27.
    Sughrue ME, Kane AJ, Shangari G, Parsa AT, Berger MS, McDermott MW Prevalence of previous extracranial malignancies in a series of 1228 patients presenting with meningioma. J Neurosurg 113 (5):1115–1121. doi: 10.3171/2010.3.JNS091975
  28. 28.
    Lee E, Grutsch J, Persky V, Glick R, Mendes J, Davis F (2006) Association of meningioma with reproductive factors. Int J Cancer 119(5):1152–1157. doi: 10.1002/ijc.21950 PubMedCrossRefGoogle Scholar
  29. 29.
    Davis F, Tavelin B, Grutsch J, Malmer B (2007) Second primary tumors following a diagnosis of meningioma in Sweden, 1958–1997. Neuroepidemiology 29(1–2):101–106. doi: 10.1159/000109823 PubMedCrossRefGoogle Scholar
  30. 30.
    Custer BS, Koepsell TD, Mueller BA (2002) The association between breast carcinoma and meningioma in women. Cancer 94(6):1626–1635. doi: 10.1002/cncr.10410 PubMedCrossRefGoogle Scholar
  31. 31.
    Rao G, Giordano SH, Liu J, McCutcheon IE (2009) The association of breast cancer and meningioma in men and women. Neurosurgery 65 (3):483–489; discussion 489. doi: 10.1227/01.NEU.0000350876.91495.E000006123-200909000-00016 Google Scholar
  32. 32.
    Preston DL, Ron E, Yonehara S, Kobuke T, Fujii H, Kishikawa M, Tokunaga M, Tokuoka S, Mabuchi K (2002) Tumors of the nervous system and pituitary gland associated with atomic bomb radiation exposure. J Natl Cancer Inst 94(20):1555–1563PubMedCrossRefGoogle Scholar
  33. 33.
    Wilson JF, Weale ME, Smith AC, Gratrix F, Fletcher B, Thomas MG, Bradman N, Goldstein DB (2001) Population genetic structure of variable drug response. Nat Genet 29(3):265–269. doi: 10.1038/ng761 PubMedCrossRefGoogle Scholar
  34. 34.
    Tang H, Quertermous T, Rodriguez B, Kardia SL, Zhu X, Brown A, Pankow JS, Province MA, Hunt SC, Boerwinkle E, Schork NJ, Risch NJ (2005) Genetic structure, self-identified race/ethnicity, and confounding in case-control association studies. Am J Hum Genet 76(2):268–275. doi: 10.1086/427888 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Risch N, Burchard E, Ziv E, Tang H (2002) Categorization of humans in biomedical research: genes, race and disease. Genome Biol 3 (7): comment 2007Google Scholar
  36. 36.
    Burchard EG, Ziv E, Coyle N, Gomez SL, Tang H, Karter AJ, Mountain JL, Perez-Stable EJ, Sheppard D, Risch N (2003) The importance of race and ethnic background in biomedical research and clinical practice. N Engl J Med 348(12):1170–1175. doi: 10.1056/NEJMsb025007 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2014

Authors and Affiliations

  • Alina Kutsenko
    • 1
  • Amy Berrington de Gonzalez
    • 1
  • Rochelle E. Curtis
    • 1
  • Preetha Rajaraman
    • 1
  1. 1.Radiation Epidemiology Branch, Division of Cancer Epidemiology and GeneticsNCI/NIHBethesdaUSA

Personalised recommendations