Advertisement

Cancer Causes & Control

, Volume 23, Issue 12, pp 1949–1958 | Cite as

Polymorphisms in oxidative stress genes, physical activity, and breast cancer risk

  • Lauren E. McCullough
  • Regina M. Santella
  • Rebecca J. Cleveland
  • Patrick T. Bradshaw
  • Robert C. Millikan
  • Kari E. North
  • Andrew F. Olshan
  • Sybil M. Eng
  • Christine B. Ambrosone
  • Jiyoung Ahn
  • Susan E. Steck
  • Susan L. Teitelbaum
  • Alfred I. Neugut
  • Marilie D. Gammon
Original paper

Abstract

Purpose

The mechanisms driving the physical activity–breast cancer association are unclear. Exercise both increases reactive oxygen species production, which may transform normal epithelium to a malignant phenotype, and enhances antioxidant capacity, which could protect against subsequent oxidative insult. Given the paradoxical effects of physical activity, the oxidative stress pathway is of interest. Genetic variation in CAT or antioxidant-related polymorphisms may mediate the physical activity–breast cancer association.

Methods

We investigated the main and joint effects of three previously unreported polymorphisms in CAT on breast cancer risk. We also estimated interactions between recreational physical activity (RPA) and 13 polymorphisms in oxidative stress-related genes. Data were from the Long Island Breast Cancer Study Project, with interview and biomarker data available on 1,053 cases and 1,102 controls.

Results

Women with ≥1 variant allele in CAT rs4756146 had a 23 % reduced risk of postmenopausal breast cancer compared with women with the common TT genotype (OR = 0.77; 95 % CI = 0.59–0.99). We observed two statistical interactions between RPA and genes in the antioxidant pathway (p = 0.043 and 0.006 for CAT and GSTP1, respectively). Highly active women harboring variant alleles in CAT rs1001179 were at increased risk of breast cancer compared with women with the common CC genotype (OR = 1.61; 95 % CI, 1.06–2.45). Risk reductions were observed among moderately active women carrying variant alleles in GSTP1 compared with women homozygous for the major allele (OR = 0.56; 95 % CI, 0.38–0.84).

Conclusions

Breast cancer risk may be jointly influenced by RPA and genes involved in the antioxidant pathway, but our findings require confirmation.

Keywords

Breast cancer Epidemiology Catalase Physical activity Oxidative stress 

Notes

Acknowledgments

This work was supported in part by grants from the National Cancer Institute and the National Institutes of Environmental Health and Sciences (Grant nos. UO1CA/ES66572, P30ES009089, and P30ES10126), the Department of Defense (Grant no. BC093608), and the University of North Carolina Lineberger Comprehensive Cancer Center Breast Cancer SPORE (Grant no. P50CA058223). Drs. Santella and Ambrosone are recipients of funding from the Breast Cancer Research Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ambrosone CB (2000) Oxidants and antioxidants in breast cancer. Antioxid Redox Signal 2:903–917PubMedCrossRefGoogle Scholar
  2. 2.
    Kang DH (2002) Oxidative stress, DNA damage, and breast cancer. AACN Clin Issues 13:540–549PubMedCrossRefGoogle Scholar
  3. 3.
    Behrend L, Henderson G, Zwacka RM (2003) Reactive oxygen species in oncogenic transformation. Biochem Soc Trans 31:1441–1444. doi: 10.1042/ PubMedCrossRefGoogle Scholar
  4. 4.
    Caporaso N (2003) The molecular epidemiology of oxidative damage to DNA and cancer. J Natl Cancer Inst 95:1263–1265PubMedCrossRefGoogle Scholar
  5. 5.
    Halliwell B (2000) The antioxidant paradox. Lancet 355:1179–1180. doi: 10.1016/S0140-6736(00)02075-4 PubMedCrossRefGoogle Scholar
  6. 6.
    Martin KR, Barrett JC (2002) Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Hum Exp Toxicol 21:71–75PubMedCrossRefGoogle Scholar
  7. 7.
    Cooke MS, Evans MD, Dizdaroglu M et al (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214. doi: 10.1096/fj.02-0752rev PubMedCrossRefGoogle Scholar
  8. 8.
    Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267. doi: 10.1146/annurev.pharmtox.44.101802.121851 PubMedCrossRefGoogle Scholar
  9. 9.
    Tas F, Hansel H, Belce A et al (2005) Oxidative stress in breast cancer. Med Oncol 22:11–15. doi: 10.1385/MO:22:1:011 PubMedCrossRefGoogle Scholar
  10. 10.
    Forsberg L, Lyrenas L, de Faire U et al (2001) A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radic Biol Med 30:500–505PubMedCrossRefGoogle Scholar
  11. 11.
    Ahn J, Gammon MD, Santella RM et al (2005) Associations between breast cancer risk and the catalase genotype, fruit and vegetable consumption, and supplement use. Am J Epidemiol 162:943–952. doi: 10.1093/aje/kwi306 PubMedCrossRefGoogle Scholar
  12. 12.
    Nadif R, Mintz M, Jedlicka A et al (2005) Association of CAT polymorphisms with catalase activity and exposure to environmental oxidative stimuli. Free Radic Res 39:1345–1350. doi: 10.1080/10715760500306711 PubMedCrossRefGoogle Scholar
  13. 13.
    Ahn J, Nowell S, McCann SE et al (2006) Associations between catalase phenotype and genotype: modification by epidemiologic factors. Cancer Epidemiol Biomarkers Prev 15:1217–1222. doi: 10.1158/1055-9965.EPI-06-0104 PubMedCrossRefGoogle Scholar
  14. 14.
    Bastaki M, Huen K, Manzanillo P et al (2006) Genotype-activity relationship for Mn-superoxide dismutase, glutathione peroxidase 1 and catalase in humans. Pharmacogenet Genomics 16:279–286. doi: 10.1097/01.fpc.0000199498.08725.9c PubMedCrossRefGoogle Scholar
  15. 15.
    Quick SK, Shields PG, Nie J et al (2008) Effect modification by catalase genotype suggests a role for oxidative stress in the association of hormone replacement therapy with postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev 17:1082–1087. doi: 10.1158/1055-9965.EPI-07-2755 PubMedCrossRefGoogle Scholar
  16. 16.
    Li Y, Ambrosone CB, McCullough MJ et al (2009) Oxidative stress-related genotypes, fruit and vegetable consumption and breast cancer risk. Carcinogenesis 30:777–784. doi: 10.1093/carcin/bgp053 PubMedCrossRefGoogle Scholar
  17. 17.
    Friedenreich CM, Cust AE (2008) Physical activity and breast cancer risk: impact of timing, type and dose of activity and population subgroup effects. Br J Sports Med 42:636–647. doi: 10.1136/bjsm.2006.029132 PubMedCrossRefGoogle Scholar
  18. 18.
    Rundle A (2005) Molecular epidemiology of physical activity and cancer. Cancer Epidemiol Biomarkers Prev 14:227–236PubMedCrossRefGoogle Scholar
  19. 19.
    Neilson HK, Friedenreich CM, Brockton NT et al (2009) Physical activity and postmenopausal breast cancer: proposed biologic mechanisms and areas for future research. Cancer Epidemiol Biomarkers Prev 18:11–27. doi: 10.1158/1055-9965.EPI-08-0756 PubMedCrossRefGoogle Scholar
  20. 20.
    McTiernan A (2008) Mechanisms linking physical activity with cancer. Nat Rev Cancer 8:205–211. doi: 10.1038/nrc2325 PubMedCrossRefGoogle Scholar
  21. 21.
    Gammon MD, Neugut AI, Santella RM et al (2002) The Long Island Breast Cancer Study Project: description of a multi-institutional collaboration to identify environmental risk factors for breast cancer. Breast Cancer Res Treat 74:235–254PubMedCrossRefGoogle Scholar
  22. 22.
    Zongli X, Taylor J (2009) SNPinfo: Integrating GWAS and candidate gene information into Functional SNP Selection for Genetic Association StudiesGoogle Scholar
  23. 23.
    International HapMap Consortium (2003) The International HapMap project. Nature 426:789–796. doi: 10.1038/nature02168 CrossRefGoogle Scholar
  24. 24.
    Terry MB, Gammon MD, Zhang FF et al (2004) Polymorphism in the DNA repair gene XPD, polycyclic aromatic hydrocarbon-DNA adducts, cigarette smoking, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 13:2053–2058PubMedGoogle Scholar
  25. 25.
    Gaudet MM, Bensen JT, Schroeder J et al (2006) Catechol-O-methyltransferase haplotypes and breast cancer among women on Long Island, New York. Breast Cancer Res Treat 99:235–240. doi: 10.1007/s10549-006-9205-0 PubMedCrossRefGoogle Scholar
  26. 26.
    Ahn J, Gammon MD, Santella RM et al (2005) No association between glutathione peroxidase Pro198Leu polymorphism and breast cancer risk. Cancer Epidemiol Biomarkers Prev 14:2459–2461. doi: 10.1158/1055-9965.EPI-05-0459 PubMedCrossRefGoogle Scholar
  27. 27.
    Ahn J, Gammon MD, Santella RM et al (2006) Effects of glutathione S-transferase A1 (GSTA1) genotype and potential modifiers on breast cancer risk. Carcinogenesis 27:1876–1882. doi: 10.1093/carcin/bgl038 PubMedCrossRefGoogle Scholar
  28. 28.
    Steck SE, Gaudet MM, Britton JA et al (2007) Interactions among GSTM1, GSTT1 and GSTP1 polymorphisms, cruciferous vegetable intake and breast cancer risk. Carcinogenesis 28:1954–1959. doi: 10.1093/carcin/bgm141 PubMedCrossRefGoogle Scholar
  29. 29.
    Gaudet MM, Gammon MD, Santella RM et al (2005) MnSOD Val-9Ala genotype, pro- and anti-oxidant environmental modifiers, and breast cancer among women on Long Island, New York. Cancer Causes Control 16:1225–1234. doi: 10.1007/s10552-005-0375-6 PubMedCrossRefGoogle Scholar
  30. 30.
    Ahn J, Gammon MD, Santella RM et al (2004) Myeloperoxidase genotype, fruit and vegetable consumption, and breast cancer risk. Cancer Res 64:7634–7639. doi: 10.1158/0008-5472.CAN-04-1843 PubMedCrossRefGoogle Scholar
  31. 31.
    Bernstein L, Henderson BE, Hanisch R et al (1994) Physical exercise and reduced risk of breast cancer in young women. J Natl Cancer Inst 86:1403–1408PubMedCrossRefGoogle Scholar
  32. 32.
    McCullough LE, Eng SM, Bradshaw PT et al (2012) Fat or fit: the joint effects of physical activity, weight gain, and body size on breast cancer risk. Cancer. doi: 10.1002/cncr.27433 PubMedGoogle Scholar
  33. 33.
    Ziegler A, Konig I (2006) A statistical approach to genetic epidemiology. Wiley, New YorkGoogle Scholar
  34. 34.
    Kleinbaum DG, Klein M (2002) Logistic Regression: A Self-Learning Text, 2nd edn. Springer, New YorkGoogle Scholar
  35. 35.
    Greenland S, Brumback B (2002) An overview of relations among causal modelling methods. Int J Epidemiol 31:1030–1037PubMedCrossRefGoogle Scholar
  36. 36.
    Greenland S (1989) Modeling and variable selection in epidemiologic analysis. Am J Public Health 79:340–349PubMedCrossRefGoogle Scholar
  37. 37.
    Breslow NE, Day NE (1980) Statistical methods in cancer research. volume i—the analysis of case-control studies. International Agency for Research on Cancer, LyonGoogle Scholar
  38. 38.
    Yang XR, Chang-Claude J, Goode EL et al (2011) Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Natl Cancer Inst 103:250–263. doi: 10.1093/jnci/djq526 PubMedCrossRefGoogle Scholar
  39. 39.
    Assmann SF, Hosmer DW, Lemeshow S et al (1996) Confidence intervals for measures of interaction. Epidemiology 7:286–290PubMedCrossRefGoogle Scholar
  40. 40.
    Rothman K, Greenland S (1998) Modern Epidemiology, 2nd edn. Maple Press, PhiladelphiaGoogle Scholar
  41. 41.
    Kanter MM (1994) Free radicals, exercise, and antioxidant supplementation. Int J Sport Nutr 4:205–220PubMedGoogle Scholar
  42. 42.
    Ayres S, Baer J, Subbiah MT (1998) Exercised-induced increase in lipid peroxidation parameters in amenorrheic female athletes. Fertil Steril 69:73–77PubMedCrossRefGoogle Scholar
  43. 43.
    Clarkson PM, Thompson HS (2000) Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 72:637S–646SPubMedGoogle Scholar
  44. 44.
    Singh VN (1992) A current perspective on nutrition and exercise. J Nutr 122:760–765PubMedGoogle Scholar
  45. 45.
    Guerra A, Rego C, Castro E et al (2000) LDL peroxidation in adolescent female gymnasts. Rev Port Cardiol 19:1129–1140PubMedGoogle Scholar
  46. 46.
    Guerra A, Rego C, Laires MJ et al (2001) Lipid profile and redox status in high performance rhythmic female teenagers gymnasts. J Sports Med Phys Fitness 41:505–512PubMedGoogle Scholar
  47. 47.
    Vani M, Reddy GP, Reddy GR et al (1990) Glutathione-S-transferase, superoxide dismutase, xanthine oxidase, catalase, glutathione peroxidase and lipid peroxidation in the liver of exercised rats. Biochem Int 21:17–26PubMedGoogle Scholar
  48. 48.
    Evelo CT, Palmen NG, Artur Y et al (1992) Changes in blood glutathione concentrations, and in erythrocyte glutathione reductase and glutathione S-transferase activity after running training and after participation in contests. Eur J Appl Physiol Occup Physiol 64:354–358PubMedCrossRefGoogle Scholar
  49. 49.
    Miyazaki H, Oh-ishi S, Ookawara T et al (2001) Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol 84:1–6PubMedCrossRefGoogle Scholar
  50. 50.
    Powers SK, Ji LL, Leeuwenburgh C (1999) Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc 31:987–997PubMedCrossRefGoogle Scholar
  51. 51.
    Radak Z, Chung HY, Goto S (2008) Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med 44:153–159. doi: 10.1016/j.freeradbiomed.2007.01.029 PubMedCrossRefGoogle Scholar
  52. 52.
    Hoffman-Goetz L, Pervaiz N, Guan J (2009) Voluntary exercise training in mice increases the expression of antioxidant enzymes and decreases the expression of TNF-alpha in intestinal lymphocytes. Brain Behav Immun 23:498–506. doi: 10.1016/j.bbi.2009.01.015 PubMedCrossRefGoogle Scholar
  53. 53.
    Siu PM, Pei XM, Teng BT et al (2011) Habitual exercise increases resistance of lymphocytes to oxidant-induced DNA damage by upregulating expression of antioxidant and DNA repairing enzymes. Exp Physiol 96:889–906. doi: 10.1113/expphysiol.2011.058396 PubMedGoogle Scholar
  54. 54.
    Hu X, Ji X, Srivastava SK et al (1997) Mechanism of differential catalytic efficiency of two polymorphic forms of human glutathione S-transferase P1–1 in the glutathione conjugation of carcinogenic diol epoxide of chrysene. Arch Biochem Biophys 345:32–38. doi: 10.1006/abbi.1997.0269 PubMedCrossRefGoogle Scholar
  55. 55.
    Sundberg K, Johansson AS, Stenberg G et al (1998) Differences in the catalytic efficiencies of allelic variants of glutathione transferase P1–1 towards carcinogenic diol epoxides of polycyclic aromatic hydrocarbons. Carcinogenesis 19:433–436PubMedCrossRefGoogle Scholar
  56. 56.
    Mao GE, Morris G, Lu QY et al (2004) Glutathione S-transferase P1 Ile105Val polymorphism, cigarette smoking and prostate cancer. Cancer Detect Prev 28:368–374. doi: 10.1016/j.cdp.2004.07.003 PubMedCrossRefGoogle Scholar
  57. 57.
    Schaid DJ, Jacobsen SJ (1999) Biased tests of association: comparisons of allele frequencies when departing from Hardy-Weinberg proportions. Am J Epidemiol 149:706–711PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Lauren E. McCullough
    • 1
  • Regina M. Santella
    • 2
  • Rebecca J. Cleveland
    • 3
  • Patrick T. Bradshaw
    • 4
  • Robert C. Millikan
    • 1
  • Kari E. North
    • 1
  • Andrew F. Olshan
    • 1
  • Sybil M. Eng
    • 5
  • Christine B. Ambrosone
    • 6
  • Jiyoung Ahn
    • 7
  • Susan E. Steck
    • 8
  • Susan L. Teitelbaum
    • 9
  • Alfred I. Neugut
    • 5
    • 10
  • Marilie D. Gammon
    • 1
  1. 1.Department of EpidemiologyUniversity of North CarolinaChapel HillUSA
  2. 2.Department of Environmental Health SciencesColumbia UniversityNew YorkUSA
  3. 3.Department of MedicineUniversity of North CarolinaChapel HillUSA
  4. 4.Department of NutritionUniversity of North CarolinaChapel HillUSA
  5. 5.Department of EpidemiologyColumbia UniversityNew YorkUSA
  6. 6.Division of Cancer Prevention and Population SciencesRoswell Park Cancer InstituteNew YorkUSA
  7. 7.Department of Environmental MedicineNew York UniversityNew YorkUSA
  8. 8.Department of Epidemiology and BiostatisticsUniversity of South CarolinaColumbiaUSA
  9. 9.Department of Community Medicine and PreventionMt. Sinai School of MedicineNew YorkUSA
  10. 10.Department of MedicineColumbia UniversityNew YorkUSA

Personalised recommendations