Abstract
Objective
Excess vitamin A may interrupt vitamin D-mediated transcription of target genes. This study investigated whether serum 25-hydroxyvitamin D [25(OH)D] concentrations were associated with lung cancer mortality, and whether this association varied by excess circulating vitamin A and vitamin A/β-carotene supplement use.
Method
We analyzed 16,693 men and women in the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994. Lung cancer mortality (n = 258, 104 were former smokers and 23 were never smokers) were identified through National Death Index as of 2006. Serum 25(OH)D was measured by a radioimmunoassay. Vitamin A biomarkers including serum retinol, β-carotene, and retinyl esters were measured by HPLC. Supplement use for the past month was obtained by self-report. Multivariate-adjusted hazard ratios (HR) were estimated by Cox proportional hazard models.
Results
There was no association of serum 25(OH)D with overall lung cancer mortality. Among nonsmokers, ≥44 vs. <44 nmol/L of serum 25(OH)D was associated with a decreased risk (HR = 0.53, 95 % CI = 0.31–0.92, former/never smokers and HR = 0.31, 95 % CI = 0.13–0.77, distant-former [quit ≥20 years]/never smokers). The associations were not observed among participants with excess circulating vitamin A (serum retinyl esters ≥7.0 μg/dL or the ratio of retinyl esters to retinol ≥0.08) or vitamin A/β-carotene supplement users. However, statistical evidence to support effect modification of vitamin A was less clear.
Conclusions
Serum 25(OH)D concentrations were inversely associated with lung cancer mortality in nonsmokers. The beneficial association was diminished among those with excess circulating vitamin A or vitamin A/β-carotene supplement users.
Similar content being viewed by others
References
Samet JM, Avila-Tang E, Boffetta P et al (2009) Lung cancer in never smokers: clinical epidemiology and environmental risk factors. Clin Cancer Res 15:5626–5645
Deeb KK, Trump DL, Johnson CS (2007) Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer 7:684–700
Hansdottir S, Monick MM, Hinde SL, Lovan N, Look DC, Hunninghake GW (2008) Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J Immunol 181:7090–7099 Baltimore, Md.: 1950
Menezes RJ, Cheney RT, Husain A et al (2008) Vitamin D receptor expression in normal, premalignant, and malignant human lung tissue. Cancer Epidemiol Biomarkers Prev 17:1104–1110
Turner A, McGowan L, Millen A, et al. (2012) Circulating DBP level and prognosis in operated lung cancer: an exploration of pathophysiology. Eur Respir J. doi:10.1183/09031936.00002912
Parise RA, Egorin MJ, Kanterewicz B et al (2006) CYP24, the enzyme that catabolizes the antiproliferative agent vitamin D, is increased in lung cancer. Int J Cancer 119:1819–1828
Kim B, Lee HJ, Choi HY et al (2007) Clinical validity of the lung cancer biomarkers identified by bioinformatics analysis of public expression data. Cancer Res 67:7431–7438
Chen G, Kim SH, King AN et al (2011) CYP24A1 is an independent prognostic marker of survival in patients with lung adenocarcinoma. Clin Cancer Res 17:817–826
Ramnath N, Kim S, Christensen PJ (2011) Vitamin D and lung cancer. Expert Rev Respir Med 5:305–309
Haussler MR, Haussler CA, Jurutka PW, et al. (1997) The vitamin D hormone and its nuclear receptor: molecular actions and disease states. The Journal of Endocrinology. 154 (Suppl): S57-73–S57-73
Zou A, Elgort MG, Allegretto EA (1997) Retinoid X receptor (RXR) ligands activate the human 25-hydroxyvitamin D3–24-hydroxylase promoter via RXR heterodimer binding to two vitamin D-responsive elements and elicit additive effects with 1,25-dihydroxyvitamin D3. J Biol Chem 272:19027–19034
Arnhold T, Tzimas G, Wittfoht W, Plonait S, Nau H. (1996) Identification of 9-cis-retinoic acid, 9,13-di-cis-retinoic acid, and 14-hydroxy-4,14-retro-retinol in human plasma after liver consumption. Life Sci 59: PL169–77
Oh K, Willett WC, Wu K, Fuchs CS, Giovannucci EL (2007) Calcium and vitamin D intakes in relation to risk of distal colorectal adenoma in women. Am J Epidemiol 165:1178–1186
Bao Y, Ng K, Wolpin BM, Michaud DS, Giovannucci E, Fuchs CS (2010) Predicted vitamin D status and pancreatic cancer risk in two prospective cohort studies. Br J Cancer 102:1422–1427
Weinstein SJ, Yu K, Horst RL, Parisi D, Virtamo J, Albanes D (2011) Serum 25-hydroxyvitamin d and risk of lung cancer in male smokers: a nested case-control study. PLoS One 6:e20796
Freedman DM, Looker AC, Abnet CC, Linet MS, Graubard BI (2010) Serum vitamin D and cancer mortality in the NHANES III study (1988–2006). Cancer Res 70:8587–8597
Freedman DM, Looker AC, Chang S-C, Graubard BI (2007) Prospective study of serum vitamin D and cancer mortality in the United States. J Natl Cancer Inst 99:1594–1602
Kilkkinen A, Knekt P, Heliövaara M et al (2008) Vitamin D status and the risk of lung cancer: a cohort study in Finland. Cancer Epidemiol Biomarkers Prev 17:3274–3278
Giovannucci E, Liu Y, Rimm EB et al (2006) Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J Natl Cancer Inst 98:451–459
Willett W (1998) Nutritional epidemiology, 2nd edn. Oxford University Press, Oxford
Mannino DM, Gagnon RC, Petty TL, Lydick E (2000) Obstructive lung disease and low lung function in adults in the United States: data from the national health and nutrition examination survey, 1988–1994. Arch Intern Med 160:1683–1689
Looker AC, Dawson-Hughes B, Calvo MS, Gunter EW, Sahyoun NR (2002) Serum 25-hydroxyvitamin D status of adolescents and adults in two seasonal subpopulations from NHANES III. Bone 30:771–777
Gunter EW, Lewis BG, Koncikowski SM (1996) Laboratory procedures used for the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994
Cheung YB (2007) A modified least-squares regression approach to the estimation of risk difference. Am J Epidemiol 166:1337–1344
Knoke JD, Burns DM, Thun MJ (2008) The change in excess risk of lung cancer attributable to smoking following smoking cessation: an examination of different analytic approaches using CPS-I data. Cancer Causes Control 19:207–219
Ebbert JO, Yang P, Vachon CM et al (2003) Lung cancer risk reduction after smoking cessation: observations from a prospective cohort of women. J Clin Oncol 21:921–926
Tong L, Spitz MR, Fueger JJ, Amos CA (1996) Lung carcinoma in former smokers. Cancer 78:1004–1010
Ballew C, Galuska D, Gillespie C (2001) High serum retinyl esters are not associated with reduced bone mineral density in the third national health and nutrition examination survey, 1988–1994. J Bone Miner Res 16:2306–2312
IOM (Institute of Medicine) (2011) Overview of Vitamin D. Dietary Reference Intake for Calcium and Vitamin D. Washington, DC: The National Academics Press
Park YK, Kim I, Yetley EA (1991) Characteristics of vitamin and mineral supplement products in the United States. Am J Clin Nutr 54:750–759
Bailey RL, Gahche JJ, Lentino CV et al (2011) Dietary supplement use in the United States, 2003–2006. J Nutr 141:261–266
Higashimoto Y, Ohata M, Nishio K et al (1996) 1 alpha, 25-dihydroxyvitamin D3 and all-trans-retinoic acid inhibit the growth of a lung cancer cell line. Anticancer Res 16:2653–2659
Hershberger PA, Modzelewski RA, Shurin ZR, Rueger RM, Trump DL, Johnson CS (1999) 1,25-Dihydroxycholecalciferol (1,25–D3) inhibits the growth of squamous cell carcinoma and down-modulates p21(Waf1/Cip1) in vitro and in vivo. Cancer Res 59:2644–2649
Light BW, Yu WD, McElwain MC, Russell DM, Trump DL, Johnson CS (1997) Potentiation of cisplatin antitumor activity using a vitamin D analogue in a murine squamous cell carcinoma model system. Cancer Res 57:3759–3764
Nakagawa K, Sasaki Y, Kato S, Kubodera N, Okano T (2005) 22-Oxa-1alpha,25-dihydroxyvitamin D3 inhibits metastasis and angiogenesis in lung cancer. Carcinogenesis 26:1044–1054
Mantell DJ, Owens PE, Bundred NJ, Mawer EB, Canfield AE (2000) 1 Alpha,25-dihydroxyvitamin D(3) inhibits angiogenesis in vitro and in vivo. Circ Res 87:214–220
Bao BY, Yao J, Lee YF (2006) 1 Alpha, 25-dihydroxyvitamin D3 suppresses interleukin-8-mediated prostate cancer cell angiogenesis. Carcinogenesis 27:1883–1893
Herbst RS, Heymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359:1367–1380
Zhou W, Suk R, Liu G et al (2005) Vitamin D is associated with improved survival in early-stage non-small cell lung cancer patients. Cancer Epidemiol Biomarkers Prev 14:2303–2309
Millen AE, Bodnar LM (2008) Vitamin D assessment in population-based studies: a review of the issues. Am J Clin Nutr 87:1102S–1105S
Hofmann JN, Yu K, Horst RL, Hayes RB, Purdue MP (2010) Long-term variation in serum 25-hydroxyvitamin D concentration among participants in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev 19:927–931
Acknowledgments
Funding for this work was provided by the Fred Hutchinson Cancer Research Center, Seattle, WA.
Conflict of interest
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Cheng, TY.D., Neuhouser, M.L. Serum 25-hydroxyvitamin D, vitamin A, and lung cancer mortality in the US population: a potential nutrient–nutrient interaction. Cancer Causes Control 23, 1557–1565 (2012). https://doi.org/10.1007/s10552-012-0033-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10552-012-0033-8