Cancer Causes & Control

, 22:1243 | Cite as

Genetic variants in the folate pathway and risk of childhood acute lymphoblastic leukemia

  • Catherine Metayer
  • Ghislaine Scélo
  • Anand P. Chokkalingam
  • Lisa F. Barcellos
  • Melinda C. Aldrich
  • Jeffrey S. Chang
  • Neela Guha
  • Kevin Y. Urayama
  • Helen M. Hansen
  • Gladys Block
  • Vincent Kiley
  • John K. Wiencke
  • Joseph L. Wiemels
  • Patricia A. Buffler
Original paper



Folate is involved in the one-carbon metabolism that plays an essential role in the synthesis, repair, and methylation of DNA. We examined whether child’s germline genetic variation in the folate pathway is associated with childhood acute lymphoblastic leukemia (ALL), and whether periconception maternal folate and alcohol intake modify the risk.


Seventy-six single nucleotide polymorphisms (SNPs), including 66 haplotype-tagging SNPs in 10 genes (CBS, DHFR, FOLH1, MTHFD1, MTHFR, MTR, MTRR, SHMT1, SLC19A1, and TYMS), were genotyped in 377 ALL cases and 448 controls. Log-additive associations between genotypes and ALL risk were adjusted for age, sex, Hispanic ethnicity (when appropriate), and maternal race.


Single and haplotype SNPs analyses showed statistically significant associations between SNPs located in (or adjacent to) CBS, MTRR, TYMS/ENOFS, and childhood ALL. Many regions of CBS were associated with childhood ALL in Hispanics and non-Hispanics (p < 0.01). Levels of maternal folate intake modified associations with SNPs in CBS, MTRR, and TYMS.


Our data suggest the importance of genetic variability in the folate pathway and childhood ALL risk.


Case–control study Children DNA methylation Folate Genetic polymorphisms Leukemia 



This research could not have been conducted without the strong support from our clinical collaborators and participating hospitals which include: University of California Davis Medical Center (Dr. Jonathan Ducore), University of California San Francisco (Dr. Mignon Loh and Dr Katherine Matthay), Children’s Hospital of Central California (Dr. Vonda Crouse), Lucile Packard Children’s Hospital (Dr. Gary Dahl), Children’s Hospital Oakland (Dr. James Feusner), Kaiser Permanente Sacramento (Dr. Vincent Kiley), Kaiser Permanente Santa Clara (Dr. Carolyn Russo and Dr. Alan Wong), Kaiser Permanente San Francisco (Dr. Kenneth Leung), and Kaiser Permanente Oakland (Dr. Stacy Month), and the families of the study participants. We also acknowledge our collaborators at the California Department of Public Health, and the entire Northern California Childhood Leukemia Study staff for their effort and dedication. Financial support: Children With Leukemia, UK, grants 2005/027 and 2006/051; National Institute of Environmental Health Sciences, grants P42-ES04705 and R01 ES09137. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Environmental Health Sciences.

Conflict of interest

The authors declare no competing financial interests.


  1. 1.
    Ferlay J, Bray F, Pisani P, Parkin DM (2004) Globocan 2002—Cancer incidence, mortality and prevalence worldwide (IARC CancerBase No. 5, version 2.0)Google Scholar
  2. 2.
    Parkin DM, Whelan SL, Ferlay J, Storm H (2005) Cancer in five continents, vol I to VIII (IARC CancerBase No. 7)Google Scholar
  3. 3.
    Greaves M (2006) Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer 6:193–203PubMedCrossRefGoogle Scholar
  4. 4.
    Friso S, Choi SW (2005) Gene-nutrient interactions in one-carbon metabolism. Curr Drug Metab 6:37–46PubMedCrossRefGoogle Scholar
  5. 5.
    Duthie SJ (1999) Folic acid deficiency and cancer: mechanisms of DNA instability. Br Med Bull 55:578–592PubMedCrossRefGoogle Scholar
  6. 6.
    Thompson JR, Gerald PF, Willoughby ML, Armstrong BK (2001) Maternal folate supplementation in pregnancy and protection against acute lymphoblastic leukaemia in childhood: a case-control study. Lancet 358:1935–1940PubMedCrossRefGoogle Scholar
  7. 7.
    Wiemels JL, Smith RN, Taylor GM, Eden OB, Alexander FE, Greaves MF (2001) Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc Natl Acad Sci USA 98:4004–4009PubMedCrossRefGoogle Scholar
  8. 8.
    Franco RF, Simoes BP, Tone LG, Gabellini SM, Zago MA, Falcao RP (2001) The methylenetetrahydrofolate reductase C677T gene polymorphism decreases the risk of childhood acute lymphocytic leukaemia. Br J Haematol 115:616–618PubMedCrossRefGoogle Scholar
  9. 9.
    Krajinovic M, Lamothe S, Labuda D et al (2004) Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood 103:252–257PubMedCrossRefGoogle Scholar
  10. 10.
    Gast A, Bermejo JL, Flohr T et al (2007) Folate metabolic gene polymorphisms and childhood acute lymphoblastic leukemia: a case-control study. Leukemia 21:320–325PubMedCrossRefGoogle Scholar
  11. 11.
    Bailey LB (2003) Folate, methyl-related nutrients, alcohol, and the MTHFR 677C→T polymorphism affect cancer risk: intake recommendations. J Nutr 133:3748S–3753SPubMedGoogle Scholar
  12. 12.
    Thirumaran RK, Gast A, Flohr T et al (2005) MTHFR genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia [letter]. Blood 106:2590–2591PubMedCrossRefGoogle Scholar
  13. 13.
    Milne E, de Klerk NH, van Bockxmeer F et al (2006) Is there a folate-related gene-environment interaction in the etiology of childhood acute lymphoblastic leukemia? Int J Cancer 119:229–232PubMedCrossRefGoogle Scholar
  14. 14.
    Zintzaras E, Koufakis T, Ziakas PD, Rodopoulou P, Giannouli S, Voulgarelis M (2006) A meta-analysis of genotypes and haplotypes of methylenetetrahydrofolate reductase gene polymorphisms in acute lymphoblastic leukemia. Eur J Epidemiol 21:501–510PubMedCrossRefGoogle Scholar
  15. 15.
    Pereira TV, Rudnicki M, Pereira AC, Pombo-de-Oliveira MS, Franco RF (2006) 5, 10-Methylenetetrahydrofolate reductase polymorphisms and acute lymphoblastic leukemia risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15:1956–1963PubMedCrossRefGoogle Scholar
  16. 16.
    Alcasabas P, Ravindranath Y, Goyette G et al (2008) 5, 10-methylenetetrahydrofolate reductase (MTHFR) polymorphisms and the risk of acute lymphoblastic leukemia (ALL) in Filipino children. Pediatr Blood Cancer 51:178–182PubMedCrossRefGoogle Scholar
  17. 17.
    Amorim MR, Zanrosso CW, Magalhaes IQ et al (2008) MTHFR 677C→T and 1298A→C polymorphisms in children with Down syndrome and acute myeloid leukemia in Brazil. Pediatr Hematol Oncol 25:744–750PubMedCrossRefGoogle Scholar
  18. 18.
    Schnakenberg E, Mehles A, Cario G et al (2005) Polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and susceptibility to pediatric acute lymphoblastic leukemia in a German study population. BMC Med Genet 6:23PubMedCrossRefGoogle Scholar
  19. 19.
    Balta G, Yuksek N, Ozyurek E et al (2003) Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes in childhood acute leukemia. Am J Hematol 73:154–160PubMedCrossRefGoogle Scholar
  20. 20.
    de Jonge R, Tissing WJ, Hooijberg JH et al (2009) Polymorphisms in folate-related genes and risk of pediatric acute lymphoblastic leukemia. Blood 113:2284–2289PubMedCrossRefGoogle Scholar
  21. 21.
    Petra BG, Janez J, Vita D (2007) Gene-gene interactions in the folate metabolic pathway influence the risk for acute lymphoblastic leukemia in children. Leuk Lymphoma 48:786–792PubMedCrossRefGoogle Scholar
  22. 22.
    Kamel AM, Moussa HS, Ebid GT, Bu RR, Bhatia KG (2007) Synergistic effect of methyltetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphism as risk modifiers of pediatric acute lymphoblastic leukemia. J Egypt Natl Canc Inst 19:96–105PubMedGoogle Scholar
  23. 23.
    Lightfoot TJ, Johnston WT, Painter D et al (2010) Genetic variation in the folate metabolic pathway and risk of childhood leukemia. Blood 115:3923–3929PubMedCrossRefGoogle Scholar
  24. 24.
    Yeoh AE, Lu Y, Chan JY et al (2010) Genetic susceptibility to childhood acute lymphoblastic leukemia shows protection in Malay boys: results from the Malaysia-Singapore ALL Study Group. Leuk Res 34:276–283PubMedCrossRefGoogle Scholar
  25. 25.
    Gra OA, Glotov AS, Kozhekbaeva Z, Makarova OV, Nasedkina TV (2008) [Genetic polymorphism in GST, NAT2, and MTRR and susceptibility to childhood acute leukemia]. Mol Biol (Mosk) 42: 214–225 (Russian)Google Scholar
  26. 26.
    Koppen IJ, Hermans FJ, Kaspers GJ (2010) Folate related gene polymorphisms and susceptibility to develop childhood acute lymphoblastic leukaemia. Br J Haematol 148:3–14PubMedCrossRefGoogle Scholar
  27. 27.
    Mason JB, Choi SW (2005) Effects of alcohol on folate metabolism: implications for carcinogenesis. Alcohol 35:235–241PubMedCrossRefGoogle Scholar
  28. 28.
    Ma X, Buffler PA, Layefsky M, Does MB, Reynolds P (2004) Control selection strategies in case-control studies of childhood diseases. Am J Epidemiol 159:915–921PubMedCrossRefGoogle Scholar
  29. 29.
    Kwan ML, Block G, Selvin S, Month S, Buffler PA (2004) Food consumption by children and the risk of childhood acute leukemia. Am J Epidemiol 160:1098–1107PubMedCrossRefGoogle Scholar
  30. 30.
    Bartley K, Metayer C, Selvin S, Ducore J, Buffler P (2010) Diagnostic X-rays and risk of childhood leukaemia. Int J Epidemiol 39:1628–1637PubMedCrossRefGoogle Scholar
  31. 31.
    Hansen HM, Wiemels JL, Wrensch M, Wiencke JK (2007) DNA quantification of whole genome amplified samples for genotyping on a multiplexed bead array platform. Cancer Epidemiol Biomarkers Prev 16:1686–1690PubMedCrossRefGoogle Scholar
  32. 32.
    Paynter RA, Skibola DR, Skibola CF, Buffler PA, Wiemels JL, Smith MT (2006) Accuracy of multiplexed Illumina platform-based single-nucleotide polymorphism genotyping compared between genomic and whole genome amplified DNA collected from multiple sources. Cancer Epidemiol Biomarkers Prev 15:2533–2536PubMedCrossRefGoogle Scholar
  33. 33.
    Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265PubMedCrossRefGoogle Scholar
  34. 34.
    The International HapMap Project (2003) Nature 426: 789–796Google Scholar
  35. 35.
    Packer BR, Yeager M, Burdett L, Koppen IJ, Hermans FJ, Kaspers GJ (2006) SNP500Cancer: a public resource for sequence validation, assay development, and frequency analysis for genetic variation in candidate genes. Nucleic Acids Res 34:D617–D621PubMedCrossRefGoogle Scholar
  36. 36.
    Gabriel SB, Schaffner SF, Nguyen H et al (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229PubMedCrossRefGoogle Scholar
  37. 37.
    Chakraborty R, Weiss KM (1986) Frequencies of complex diseases in hybrid populations. Am J Phys Anthropol 70:489–503PubMedCrossRefGoogle Scholar
  38. 38.
    Hanis CL, Chakraborty R, Ferrell RE, Schull WJ (1986) Individual admixture estimates: disease associations and individual risk of diabetes and gallbladder disease among Mexican-Americans in Starr County, Texas. Am J Phys Anthropol 70:433–441PubMedCrossRefGoogle Scholar
  39. 39.
    Jensen CD, Block G, Buffler P, Ma X, Selvin S, Month S (2004) Maternal dietary risk factors in childhood acute lymphoblastic leukemia (United States). Cancer Causes Control 15:559–570PubMedCrossRefGoogle Scholar
  40. 40.
    Yu Z, Schaid DJ (2007) Sequential haplotype scan methods for association analysis. Genet Epidemiol 31:553–564PubMedCrossRefGoogle Scholar
  41. 41.
    Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG (2002) Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered 53:79–91PubMedCrossRefGoogle Scholar
  42. 42.
    Mathias RA, Gao P, Goldstein JL et al (2006) A graphical assessment of p-values from sliding window haplotype tests of association to identify asthma susceptibility loci on chromosome 11q. BMC Genet 7:38PubMedCrossRefGoogle Scholar
  43. 43.
    Pereira AC, Schettert IT, Morandini Filho AA, Guerra-Shinohara EM, Krieger JE (2004) Methylenetetrahydrofolate reductase (MTHFR) c677t gene variant modulates the homocysteine folate correlation in a mild folate-deficient population. Clin Chim Acta 340:99–105PubMedCrossRefGoogle Scholar
  44. 44.
    McDowell MA, Lacher DA, Pfeiffer CM, et al. (2008) Blood folate levels: the latest NHANES results. NCHS Data Brief, 1–8Google Scholar
  45. 45.
    Semmler A, Simon M, Moskau S, Linnebank M (2008) Polymorphisms of methionine metabolism and susceptibility to meningioma formation: laboratory investigation. J Neurosurg 108:999–1004PubMedCrossRefGoogle Scholar
  46. 46.
    Le Marchand L, Donlon T, Hankin JH, Kolonel LN, Wilkens LR, Seifried A (2002) B-vitamin intake, metabolic genes, and colorectal cancer risk (United States). Cancer Causes Control 13:239–248PubMedCrossRefGoogle Scholar
  47. 47.
    Ott N, Geddert H, Sarbia M (2008) Polymorphisms in methionine synthase (A2756G) and cystathionine beta-synthase (844ins68) and susceptibility to carcinomas of the upper gastrointestinal tract. J Cancer Res Clin Oncol 134:405–410PubMedCrossRefGoogle Scholar
  48. 48.
    Shen M, Rothman N, Berndt SI et al (2005) Polymorphisms in folate metabolic genes and lung cancer risk in Xuan Wei, China. Lung Cancer 49:299–309PubMedCrossRefGoogle Scholar
  49. 49.
    Chadefaux B, Rethore MO, Raoul O et al (1985) Cystathionine beta synthase: gene dosage effect in trisomy 21. Biochem Biophys Res Commun 128:40–44PubMedCrossRefGoogle Scholar
  50. 50.
    Kim HN, Kim YK, Lee IK et al (2009) Association between polymorphisms of folate-metabolizing enzymes and hematological malignancies. Leuk Res 33:82–87PubMedCrossRefGoogle Scholar
  51. 51.
    Murtaugh MA, Curtin K, Sweeney C et al (2007) Dietary intake of folate and co-factors in folate metabolism, MTHFR polymorphisms, and reduced rectal cancer. Cancer Causes Control 18:153–163PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang FF, Terry MB, Hou L et al (2007) Genetic polymorphisms in folate metabolism and the risk of stomach cancer. Cancer Epidemiol Biomarkers Prev 16:115–121PubMedCrossRefGoogle Scholar
  53. 53.
    Arasaradnam RP, Commane DM, Bradburn D, Mathers JC (2008) A review of dietary factors and its influence on DNA methylation in colorectal carcinogenesis. Epigenetics 3:193–198PubMedCrossRefGoogle Scholar
  54. 54.
    Hung RJ, Hashibe M, McKay J et al (2007) Folate-related genes and the risk of tobacco-related cancers in Central Europe. Carcinogenesis 28:1334–1340PubMedCrossRefGoogle Scholar
  55. 55.
    Liu N, Zhang K, Zhao H (2008) Haplotype-association analysis. Adv Genet 60:335–405PubMedCrossRefGoogle Scholar
  56. 56.
    Kwan ML, Jensen CD, Block G, Hudes ML, Chu LW, Buffler PA (2009) Maternal diet and risk of childhood acute lymphoblastic leukemia. Public Health Rep 124:503–514PubMedGoogle Scholar
  57. 57.
    Caudill MA, Le T, Moonie SA, Esfahani ST, Cogger EA (2001) Folate status in women of childbearing age residing in Southern California after folic acid fortification. J Am Coll Nutr 20:129–134PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Catherine Metayer
    • 1
  • Ghislaine Scélo
    • 3
  • Anand P. Chokkalingam
    • 2
  • Lisa F. Barcellos
    • 2
  • Melinda C. Aldrich
    • 4
  • Jeffrey S. Chang
    • 5
  • Neela Guha
    • 3
  • Kevin Y. Urayama
    • 3
  • Helen M. Hansen
    • 6
  • Gladys Block
    • 2
  • Vincent Kiley
    • 7
  • John K. Wiencke
    • 6
  • Joseph L. Wiemels
    • 6
  • Patricia A. Buffler
    • 2
  1. 1.School of Public HealthUniversity of California, BerkeleyBerkeleyUSA
  2. 2.School of Public HealthUniversity of California, BerkeleyBerkeleyUSA
  3. 3.International Agency for Research on CancerLyonFrance
  4. 4.Division of Epidemiology, Institute for Medicine and Public HealthVanderbilt UniversityVanderbiltUSA
  5. 5.National Institute of Cancer Research, National Health Research InstitutesTainanTaiwan
  6. 6.Departments of Neurological Surgery & Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoUSA
  7. 7.Kaiser Permanente HospitalRosevilleUSA

Personalised recommendations