Cancer Causes & Control

, 19:1085 | Cite as

Daidzein-metabolizing phenotypes in relation to serum hormones and sex hormone binding globulin, and urinary estrogen metabolites in premenopausal women in the United States

  • Charlotte Atkinson
  • Katherine M. Newton
  • Frank Z. Stanczyk
  • Kim C. Westerlind
  • Lin Li
  • Johanna W. Lampe
Original Paper



Blood and urine concentrations of hormones are implicated in the etiology of some cancers. Small studies have assessed relationships between production of the daidzein metabolites equol and O-desmethylangolensin (ODMA) and hormones, but findings are unclear. We evaluated relationships between daidzein-metabolizing phenotypes and follicular phase concentrations of estrogens, androgens, sex hormone binding globulin (SHBG), and urinary estrogen metabolites in premenopausal women.


Two-hundred women collected a first-void urine sample after a 3-day soy challenge, and 191 and 193 provided fasting blood and spot urine samples, respectively, during days 5–9 of their menstrual cycle. Soy challenge urines were analyzed for isoflavones; serum was analyzed for estrogens, androgens, and SHBG; spot urines were analyzed for 2-hydroxyestrone and 16α-hydroxyestrone. Data were log-transformed and multiple regression analyses were conducted to assess relationships between daidzein-metabolizing phenotypes and hormones and SHBG. Data from 187 and 189 women were included in analyses of serum and urine hormones, respectively.


55 (27.5%) and 182 (91%) of the 200 women who provided a soy challenge urine sample were equol- and ODMA-producers (>87.5 ng/ml urine), respectively. In unadjusted analyses, equol-producers (n = 52) had lower free testosterone than equol non-producers (n = 137, p = 0.02). In adjusted analyses, there were no differences between producers and non-producers of either daidzein metabolite.


In the absence of a soy intervention, we found no difference in serum or urine hormone concentrations between producers and non-producers of equol or ODMA.


Androgens Equol Estrogens Isoflavones O-desmethylangolensin 



We wish to thank Kathy Plant, Kelly Ehrlich, and the GH group for screening interviews, clinic visits and study coordination, Wendy Thomas for isoflavone analyses, JoAnn Prunty for creatinine analyses, and all of the study participants.


  1. 1.
    Persson I (2000) Estrogens in the causation of breast, endometrial and ovarian cancers—evidence and hypotheses from epidemiological findings. J Steroid Biochem Mol Biol 74:357–364. doi: 10.1016/S0960–0760(00)00113-8 PubMedCrossRefGoogle Scholar
  2. 2.
    Stewart EA (2001) Uterine fibroids. Lancet 357:293–298. doi: 10.1016/S0140-6736(00)03622-9 PubMedCrossRefGoogle Scholar
  3. 3.
    Giudice LC, Kao LC (2004) Endometriosis. Lancet 364:1789–1799. doi: 10.1016/S0140-6736(04)17403-5 PubMedCrossRefGoogle Scholar
  4. 4.
    Muti P, Bradlow HL, Micheli A et al (2000) Estrogen metabolism and risk of breast cancer: a prospective study of the 2:16alpha-hydroxyestrone ratio in premenopausal and postmenopausal women. Epidemiology 11:635–640. doi: 10.1097/00001648-200011000-00004 PubMedCrossRefGoogle Scholar
  5. 5.
    Kabat GC, Chang CJ, Sparano JA et al (1997) Urinary estrogen metabolites and breast cancer: a case–control study. Cancer Epidemiol Biomarkers Prev 6:505–509PubMedGoogle Scholar
  6. 6.
    Meilahn EN, De Stavola B, Allen DS et al (1998) Do urinary oestrogen metabolites predict breast cancer? Guernsey III cohort follow-up. Br J Cancer 78:1250–1255PubMedGoogle Scholar
  7. 7.
    Zheng W, Dunning L, Jin F, Holtzman J (1998) Correspondence re: Kabat GC et al., Urinary estrogen metabolites and breast cancer: a case–control study. Cancer Epidemiol Biomark Prev 6:505–509, 1997. Cancer Epidemiol Biomarkers Prev 7:85–86Google Scholar
  8. 8.
    Kurzer MS (2002) Hormonal effects of soy in premenopausal women and men. J Nutr 132:570S–573SPubMedGoogle Scholar
  9. 9.
    Kurzer MS (2000) Hormonal effects of soy isoflavones: studies in premenopausal and postmenopausal women. J Nutr 130:660S–661SPubMedGoogle Scholar
  10. 10.
    Setchell KD, Brown NM, Lydeking-Olsen E (2002) The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J Nutr 132:3577–3584PubMedGoogle Scholar
  11. 11.
    Rowland IR, Wiseman H, Sanders TA, Adlercreutz H, Bowey EA (2000) Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr Cancer 36:27–32. doi: 10.1207/S15327914NC3601_5 PubMedCrossRefGoogle Scholar
  12. 12.
    Akaza H, Miyanaga N, Takashima N et al (2002) Is daidzein non-metabolizer a high risk for prostate cancer? A case–controlled study of serum soybean isoflavone concentration. Jpn J Clin Oncol 32:296–300. doi: 10.1093/jjco/hyf064 PubMedCrossRefGoogle Scholar
  13. 13.
    Kelly GE, Joannou GE, Reeder AY, Nelson C, Waring MA (1995) The variable metabolic response to dietary isoflavones in humans. Proc Soc Exp Biol Med 208:40–43PubMedGoogle Scholar
  14. 14.
    Lampe JW, Karr SC, Hutchins AM, Slavin JL (1998) Urinary equol excretion with a soy challenge: influence of habitual diet. Proc Soc Exp Biol Med 217:335–339PubMedGoogle Scholar
  15. 15.
    Hutchins AM, Slavin JL, Lampe JW (1995) Urinary isoflavonoid phytoestrogen and lignan excretion after consumption of fermented and unfermented soy products. J Am Diet Assoc 95:545–551. doi: 10.1016/S0002-8223(95)00149-2 PubMedCrossRefGoogle Scholar
  16. 16.
    Arai Y, Uehara M, Sato Y et al (2000) Comparison of isoflavones among dietary intake, plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake. J Epidemiol 10:127–135PubMedGoogle Scholar
  17. 17.
    Frankenfeld CL, McTiernan A, Tworoger SS et al (2004) Serum steroid hormones, sex hormone-binding globulin concentrations, and urinary hydroxylated estrogen metabolites in post-menopausal women in relation to daidzein-metabolizing phenotypes. J Steroid Biochem Mol Biol 88: 399–408. doi: 10.1016/j.jsbmb.2004.01.006 PubMedCrossRefGoogle Scholar
  18. 18.
    Atkinson C, Frankenfeld CL, Lampe JW (2005) Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp Biol Med (Maywood) 230:155–170Google Scholar
  19. 19.
    Evans BA, Griffiths K, Morton MS (1995) Inhibition of 5 alpha-reductase in genital skin fibroblasts and prostate tissue by dietary lignans and isoflavonoids. J Endocrinol 147:295–302PubMedCrossRefGoogle Scholar
  20. 20.
    Pelissero C, Lenczowski MJ, Chinzi D, Davail-Cuisset B, Sumpter JP, Fostier A (1996) Effects of flavonoids on aromatase activity, an in vitro study. J Steroid Biochem Mol Biol 57:215–223. doi: 10.1016/0960-0760(95)00261-8 PubMedCrossRefGoogle Scholar
  21. 21.
    Adlercreutz H, Bannwart C, Wahala K et al (1993) Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. J Steroid Biochem Mol Biol 44:147–153. doi: 10.1016/0960-0760(93)90022-O PubMedCrossRefGoogle Scholar
  22. 22.
    Adlercreutz H, Martin F, Pulkkinen M et al (1976) Intestinal metabolism of estrogens. J Clin Endocrinol Metab 43:497–505PubMedGoogle Scholar
  23. 23.
    Järvenpää P, Kosunen T, Fotsis T, Adlercreutz H (1980) In vitro metabolism of estrogens by isolated intestinal micro-organisms and by human faecal microflora. J Steroid Biochem 13:345–349. doi: 10.1016/0022-4731(80)90014-X PubMedCrossRefGoogle Scholar
  24. 24.
    Järvenpää P (1990) In vitro metabolism of catechol estrogens by human fecal microflora. J Steroid Biochem 35:289–292. doi: 10.1016/0022-4731(90)90286-2 PubMedCrossRefGoogle Scholar
  25. 25.
    Lombardi P, Goldin B, Boutin E, Gorbach SL (1978) Metabolism of androgens and estrogens by human fecal microorganisms. J Steroid Biochem 9:795–801. doi: 10.1016/0022-4731(78)90203-0 PubMedCrossRefGoogle Scholar
  26. 26.
    Ingram D, Sanders K, Kolybaba M, Lopez D (1997) Case–control study of phyto-oestrogens and breast cancer. Lancet 350:990–994. doi: 10.1016/S0140-6736(97)01339-1 PubMedCrossRefGoogle Scholar
  27. 27.
    Zheng W, Dai Q, Custer LJ et al (1999) Urinary excretion of isoflavonoids and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev 8:35–40PubMedGoogle Scholar
  28. 28.
    Grace PB, Taylor JI, Low YL et al (2004) Phytoestrogen concentrations in serum and spot urine as biomarkers for dietary phytoestrogen intake and their relation to breast cancer risk in European prospective investigation of cancer and nutrition-norfolk. Cancer Epidemiol Biomarkers Prev 13:698–708PubMedGoogle Scholar
  29. 29.
    Duncan AM, Merz-Demlow BE, Xu X, Phipps WR, Kurzer MS (2000) Premenopausal equol excretors show plasma hormone profiles associated with lowered risk of breast cancer. Cancer Epidemiol Biomarkers Prev 9:581–586PubMedGoogle Scholar
  30. 30.
    Bonorden MJ, Greany KA, Wangen KE et al (2004) Consumption of Lactobacillus acidophilus and Bifidobacterium longum do not alter urinary equol excretion and plasma reproductive hormones in premenopausal women. Eur J Clin Nutr 58:1635–1642. doi: 10.1038/sj.ejcn.1602020 PubMedCrossRefGoogle Scholar
  31. 31.
    Atkinson C, Newton KM, Aiello-Bowles EJ, Yong M, Lampe JW (2008) Demographic, anthropometric, and lifestyle factors and dietary intakes in relation to daidzein-metabolizing phenotypes among premenopausal women in the United States. Am J Clin Nutr 87:679–687PubMedGoogle Scholar
  32. 32.
    Taplin SH, Ichikawa L, Buist DS, Seger D, White E (2004) Evaluating organized breast cancer screening implementation: the prevention of late-stage disease? Cancer Epidemiol Biomarkers Prev 13:225–234. doi: 10.1158/1055-9965.EPI-03-0206 PubMedCrossRefGoogle Scholar
  33. 33.
    Goebelsmann U, Bernstein GS, Gale JA et al (1979) Serum gonadotrophin, testosterone, estradiol and estrone levels prior to and following bilateral vasectomy. In: Lepow IH, Crozier R (eds) Vasectomy: Immunologic and pathophysiologic effects in animals and man. New York, Academic Press, p 165Google Scholar
  34. 34.
    Probst-Hensch NM, Ingles SA, Diep AT et al (1999) Aromatase and breast cancer susceptibility. Endocr Relat Cancer 6:165–173. doi: 10.1677/erc.0.0060165 PubMedCrossRefGoogle Scholar
  35. 35.
    Vermeulen A, Verdonck L, Kaufman JM (1999) A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 84:3666–3672. doi: 10.1210/jc.84.10.3666 PubMedCrossRefGoogle Scholar
  36. 36.
    Sodergard R, Backstrom T, Shanbhag V, Carstensen H (1982) Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature. J Steroid Biochem 16:801–810. doi: 10.1016/0022-4731(82)90038-3 PubMedCrossRefGoogle Scholar
  37. 37.
    Rinaldi S, Geay A, Dechaud H et al (2002) Validity of free testosterone and free estradiol determinations in serum samples from postmenopausal women by theoretical calculations. Cancer Epidemiol Biomarkers Prev 11:1065–1071PubMedGoogle Scholar
  38. 38.
    Nettleton JA, Greany KA, Thomas W, Wangen KE, Adlercreutz H, Kurzer MS (2005) The effect of soy consumption on the urinary 2:16-hydroxyestrone ratio in postmenopausal women depends on equol production status but is not influenced by probiotic consumption. J Nutr 135:603–608PubMedGoogle Scholar
  39. 39.
    Mulligan AA, Welch AA, McTaggart AA, Bhaniani A, Bingham SA (2007) Intakes and sources of soya foods and isoflavones in a UK population cohort study (EPIC-Norfolk). Eur J Clin Nutr 61:248–254. doi: 10.1038/sj.ejcn.1602509 PubMedCrossRefGoogle Scholar
  40. 40.
    Keinan-Boker L, van Der Schouw YT, Grobbee DE, Peeters PH (2004) Dietary phytoestrogens and breast cancer risk. Am J Clin Nutr 79:282–288PubMedGoogle Scholar
  41. 41.
    McKinlay SM, Brambilla DJ, Posner JG (1992) The normal menopause transition. Maturitas 14:103–115. doi: 10.1016/0378-5122(92)90003-M PubMedCrossRefGoogle Scholar
  42. 42.
    McKinlay SM (1996) The normal menopause transition: an overview. Maturitas 23:137–145. doi: 10.1016/0378-5122(95)00985-X PubMedCrossRefGoogle Scholar
  43. 43.
    Burger HG, Dudley EC, Hopper JL et al (1999) Prospectively measured levels of serum follicle-stimulating hormone, estradiol, and the dimeric inhibins during the menopausal transition in a population-based cohort of women. J Clin Endocrinol Metab 84:4025–4030. doi: 10.1210/jc.84.11.4025 PubMedCrossRefGoogle Scholar
  44. 44.
    Burger HG, Dudley EC, Robertson DM, Dennerstein L (2002) Hormonal changes in the menopause transition. Recent Prog Horm Res 57:257–275. doi: 10.1210/rp.57.1.257 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Charlotte Atkinson
    • 1
  • Katherine M. Newton
    • 2
    • 3
  • Frank Z. Stanczyk
    • 4
  • Kim C. Westerlind
    • 5
  • Lin Li
    • 1
  • Johanna W. Lampe
    • 2
    • 6
  1. 1.Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Department of EpidemiologyUniversity of WashingtonSeattleUSA
  3. 3.Group Health Center for Health StudiesSeattleUSA
  4. 4.Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  5. 5.Division of Endocrinology, Metabolism and DiabetesUniversity of Colorado Health Sciences CenterDenverUSA
  6. 6.Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations