Frequency of heterozygous germline pathogenic variants in genes for Fanconi anemia in patients with non-BRCA1/BRCA2 breast cancer: a meta-analysis

Abstract

Purpose

Germline pathogenic variants in BRCA1 (FANCD1) and BRCA2 (FANCS) do not explain all familial or sporadic cases with breast cancer. Several reports indicate a role for pathogenic variants in other genes in the Fanconi anemia/breast cancer DNA repair pathway; the strengths of these associations vary widely. Publications from 2006 through 2017 were reviewed to provide a better estimate of the role of pathogenic variants in genes in this pathway in breast cancer.

Methods

We identified cohorts and case–control reports describing heterozygous pathogenic variants in Fanconi anemia genes in breast cancer cases with high risk of a germline pathogenic variant in a non-BRCA1/2 breast cancer susceptibility gene (“familial”), and cases unselected for family history (“unselected”). Meta-analysis and meta-regression were used to estimate the frequencies of pathogenic variants in cohorts and the odds ratios (OR) in case–control studies.

Results

Meta-analysis of more than 100 reports of FANCN/PALB2 in familial breast cancer cases provided an overall pathogenic variant prevalence of 1.29% and an OR of 8.45. The prevalence in unselected cohorts was 0.64%, and the OR was 4.76. Pathogenic variants in FANCJ/BRIP1 had a prevalence of 0.5% in familial cases, and an OR of 1.62; their prevalence in unselected cases was 0.39%. FANCO/RAD51C, FANCP/SLX4, FANCU/XRCC2, FANCD2, and other FA-related genes all had prevalences of ≤ 0.5% among familial cases, and even lower in unselected cases.

Conclusions

Heterozygous pathogenic variants in FANCN/PALB2 and possibly FANCJ/BRIP1 may account for 1–2% of familial non-BRCA1/2 breast cancer cases and 0.5–1% of unselected cases. Genetic counseling and testing may be suggested for unaffected relatives.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The search terms for the literature review are included in the Methods section of the manuscript, and the studies included in the meta-analysis are listed and referenced in the supplementary material.

Change history

  • 08 July 2020

    In the original publication of the article, the first sentence in the abstract was published incorrectly.

References

  1. 1.

    American Cancer Society (2019–2020) Breast Cancer Facts & Figures 2019–2020. American Cancer Society, Inc., Atlanta

  2. 2.

    Wang AT, Smogorzewska A (2015) SnapShot: Fanconi anemia and associated proteins. Cell 160:354–354

    CAS  Article  Google Scholar 

  3. 3.

    Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to meta-analysis. Wiley, West Sussex

    Google Scholar 

  4. 4.

    Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG (2001) Replication validity of genetic association studies. Nat Genet 29:306–309. https://doi.org/10.1038/ng749

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Zeng D, Lin DY (2015) On random-effects meta-analysis. Biometrika 102:281–294. https://doi.org/10.1093/biomet/asv011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Easton DF, Pharoah PD, Antoniou AC, Tischkowitz M, Tavtigian SV, Nathanson KL, Devilee P, Meindl A, Couch FJ, Southey M, Goldgar DE, Evans DG, Chenevix-Trench G, Rahman N, Robson M, Domchek SM, Foulkes WD (2015) Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med 372:2243–2257. https://doi.org/10.1056/NEJMsr1501341

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Ellsworth DL, Turner CE, Ellsworth RE (2019) A review of the hereditary component of triple negative breast cancer: high- and moderate-penetrance breast cancer genes, low-penetrance loci, and the role of nontraditional genetic elements. J Oncol 2019:4382606. https://doi.org/10.1155/2019/4382606

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    R Core Team (2018) R: a language and environment for statistical computing. R. Foundation for Statistical Computing, Vienna

    Google Scholar 

  9. 9.

    Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:1–48

    Article  Google Scholar 

  10. 10.

    Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, Reid S, Spanova K, Barfoot R, Chagtai T, Jayatilake H, McGuffog L, Hanks S, Evans DG, Eccles D, Easton DF, Stratton MR (2006) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39:165–167

    Article  Google Scholar 

  11. 11.

    Slavin TP, Maxwell KN, Lilyquist J, Vijai J, Neuhausen SL, Hart SN, Ravichandran V, Thomas T, Maria A, Villano D, Schrader KA, Moore R, Hu C, Wubbenhorst B, Wenz BM, D'Andrea K, Robson ME, Peterlongo P, Bonanni B, Ford JM, Garber JE, Domchek SM, Szabo C, Offit K, Nathanson KL, Weitzel JN, Couch FJ (2017) The contribution of pathogenic variants in breast cancer susceptibility genes to familial breast cancer risk. NPJ Breast Cancer 3:22. https://doi.org/10.1038/s41523-017-0024-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Skol AD, Sasaki MM, Onel K (2016) The genetics of breast cancer risk in the post-genome era: thoughts on study design to move past BRCA and towards clinical relevance. Breast Cancer Res 18:99. https://doi.org/10.1186/s13058-016-0759-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkas K, Roberts J, Lee A, Subramanian D, De LK, Fostira F, Tomiak E, Neuhausen SL, Teo ZL, Khan S, Aittomaki K, Moilanen JS, Turnbull C, Seal S, Mannermaa A, Kallioniemi A, Lindeman GJ, Buys SS, Andrulis IL, Radice P, Tondini C, Manoukian S, Toland AE, Miron P, Weitzel JN, Domchek SM, Poppe B, Claes KB, Yannoukakos D, Concannon P, Bernstein JL, James PA, Easton DF, Goldgar DE, Hopper JL, Rahman N, Peterlongo P, Nevanlinna H, King MC, Couch FJ, Southey MC, Winqvist R, Foulkes WD, Tischkowitz M (2014) Breast-cancer risk in families with mutations in PALB2. N Engl J Med 371:497–506

    Article  Google Scholar 

  14. 14.

    Weber-Lassalle N, Hauke J, Ramser J, Richters L, Gross E, Blumcke B, Gehrig A, Kahlert AK, Muller CR, Hackmann K, Honisch E, Weber-Lassalle K, Niederacher D, Borde J, Thiele H, Ernst C, Altmuller J, Neidhardt G, Nurnberg P, Klaschik K, Schroeder C, Platzer K, Volk AE, Wang-Gohrke S, Just W, Auber B, Kubisch C, Schmidt G, Horvath J, Wappenschmidt B, Engel C, Arnold N, Dworniczak B, Rhiem K, Meindl A, Schmutzler RK, Hahnen E (2018) BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer. Breast Cancer Res 20:7. https://doi.org/10.1186/s13058-018-0935-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Yang X, Leslie G, Doroszuk A, Schneider S, Allen J, Decker B, Dunning AM, Redman J, Scarth J, Plaskocinska I, Luccarini C, Shah M, Pooley K, Dorling L, Lee A, Adank MA, Adlard J, Aittomaki K, Andrulis IL, Ang P, Barwell J, Bernstein JL, Bobolis K, Borg A, Blomqvist C, Claes KBM, Concannon P, Cuggia A, Culver JO, Damiola F, de Pauw A, Diez O, Dolinsky JS, Domchek SM, Engel C, Evans DG, Fostira F, Garber J, Golmard L, Goode EL, Gruber SB, Hahnen E, Hake C, Heikkinen T, Hurley JE, Janavicius R, Kleibl Z, Kleiblova P, Konstantopoulou I, Kvist A, Laduca H, Lee ASG, Lesueur F, Maher ER, Mannermaa A, Manoukian S, McFarland R, McKinnon W, Meindl A, Metcalfe K, Mohd Taib NA, Moilanen J, Nathanson KL, Neuhausen S, Ng PS, Nguyen-Dumont T, Nielsen SM, Obermair F, Offit K, Olopade OI, Ottini L, Penkert J, Pylkas K, Radice P, Ramus SJ, Rudaitis V, Side L, Silva-Smith R, Silvestri V, Skytte AB, Slavin T, Soukupova J, Tondini C, Trainer AH, Unzeitig G, Usha L, van Overeem HT, Whitworth J, Wood M, Yip CH, Yoon SY, Yussuf A, Zogopoulos G, Goldgar D, Hopper JL, Chenevix-Trench G, Pharoah P, George SHL, Balmana J, Houdayer C et al (2020) Cancer risks associated with germline PALB2 pathogenic variants: an international study of 524 families. J Clin Oncol 38:674–685. https://doi.org/10.1200/JCO.19.01907

    Article  PubMed  Google Scholar 

  16. 16.

    Alter BP, Rosenberg PS, Brody LC (2007) Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2. J Med Genet 44:1–9

    CAS  Article  Google Scholar 

  17. 17.

    Hunter JE, Schmidt FL (2000) Fixed effects vs random effects meta-analysis. Int J Select Assess 8:275–292

    Article  Google Scholar 

  18. 18.

    Couch FJ, Shimelis H, Hu C, Hart SN, Polley EC, Na J, Hallberg E, Moore R, Thomas A, Lilyquist J, Feng B, McFarland R, Pesaran T, Huether R, LaDuca H, Chao EC, Goldgar DE, Dolinsky JS (2017) Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol 3:1190–1196. https://doi.org/10.1001/jamaoncol.2017.0424

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lu HM, Li S, Black MH, Lee S, Hoiness R, Wu S, Mu W, Huether R, Chen J, Sridhar S, Tian Y, McFarland R, Dolinsky J, Tippin Davis B, Mexal S, Dunlop C, Elliott A (2018) Association of breast and ovarian cancers with predisposition genes identified by large-scale sequencing. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2018.2956

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Momozawa Y, Iwasaki Y, Parsons MT, Kamatani Y, Takahashi A, Tamura C, Katagiri T, Yoshida T, Nakamura S, Sugano K, Miki Y, Hirata M, Matsuda K, Spurdle AB, Kubo M (2018) Germline pathogenic variants of 11 breast cancer genes in 7,051 Japanese patients and 11,241 controls. Nat Commun 9:4083. https://doi.org/10.1038/s41467-018-06581-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Shimelis H, LaDuca H, Hu C, Hart SN, Na J, Thomas A, Akinhanmi M, Moore RM, Brauch H, Cox A, Eccles DM, Ewart-Toland A, Fasching PA, Fostira F, Garber J, Godwin AK, Konstantopoulou I, Nevanlinna H, Sharma P, Yannoukakos D, Yao S, Feng BJ, Tippin Davis B, Lilyquist J, Pesaran T, Goldgar DE, Polley EC, Dolinsky JS, Couch FJ (2018) Triple-negative breast cancer risk genes identified by multigene hereditary cancer panel testing. J Natl Cancer Inst 110:855–862. https://doi.org/10.1093/jnci/djy106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Deng M, Chen HH, Zhu X, Luo M, Zhang K, Xu CJ, Hu KM, Cheng P, Zhou JJ, Zheng S, Chen YD (2019) Prevalence and clinical outcomes of germline mutations in BRCA1/2 and PALB2 genes in 2769 unselected breast cancer patients in China. Int J Cancer 145:1517–1528. https://doi.org/10.1002/ijc.32184

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Kurian AW, Ward KC, Howlader N, Deapen D, Hamilton AS, Mariotto A, Miller D, Penberthy LS, Katz SJ (2019) Genetic testing and results in a population-based cohort of breast cancer patients and ovarian cancer patients. J Clin Oncol 37:1305–1315. https://doi.org/10.1200/jco.18.01854

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Briggs TA, Abdel-Salam GM, Balicki M, Baxter P, Bertini E, Bishop N, Browne BH, Chitayat D, Chong WK, Eid MM, Halliday W, Hughes I, Klusmann-Koy A, Kurian M, Nischal KK, Rice GI, Stephenson JB, Surtees R, Talbot JF, Tehrani NN, Tolmie JL, Toomes C, van der Knaap MS, Crow YJ (2008) Cerebroretinal microangiopathy with calcifications and cysts (CRMCC). Am J Med Genet A 146A:182–190

    CAS  Article  Google Scholar 

  25. 25.

    Vagena A, Papamentzelopoulou M, Kalfakakou D, Kollia P, Papadimitriou C, Psyrri A, Apostolou P, Fountzilas G, Konstantopoulou I, Yannoukakos D, Fostira F (2019) PALB2 c.2257C>T truncating variant is a Greek founder and is associated with high breast cancer risk. J Hum Genet 64:767–773. https://doi.org/10.1038/s10038-019-0612-6

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Weitzel JN, Neuhausen SL, Adamson A, Tao S, Ricker C, Maoz A, Rosenblatt M, Nehoray B, Sand S, Steele L, Unzeitig G, Feldman N, Blanco AM, Hu D, Huntsman S, Castillo D, Haiman C, Slavin T, Ziv E (2019) Pathogenic and likely pathogenic variants in PALB2, CHEK2, and other known breast cancer susceptibility genes among 1054 BRCA-negative Hispanics with breast cancer. Cancer 125:2829–2836. https://doi.org/10.1002/cncr.32083

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Megan N Frone MS CGC, Mark H Greene MD, and Philip S Rosenberg PhD, for reviewing the manuscript.

Funding

This work was supported by the intramural research program of the National Cancer Institute of the National Institutes of Health, Bethesda, MD. The views presented in this article are those of the authors and should not be viewed as official opinions or positions of the National Cancer Institute, National Institutes of Health, or U.S. Department of Health and Human Services.

Author information

Affiliations

Authors

Contributions

BPA performed the literature review, and AFB performed the statistical analyses.

Corresponding author

Correspondence to Blanche P. Alter.

Ethics declarations

Conflict of interest

BPA declares that she has no conflict of interest. AFB declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4312 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alter, B.P., Best, A.F. Frequency of heterozygous germline pathogenic variants in genes for Fanconi anemia in patients with non-BRCA1/BRCA2 breast cancer: a meta-analysis. Breast Cancer Res Treat 182, 465–476 (2020). https://doi.org/10.1007/s10549-020-05710-6

Download citation

Keywords

  • Breast cancer
  • Fanconi anemia
  • Germline pathogenic variants
  • Meta-analysis
  • Meta-regression
  • PALB2
  • BRIP1