Breast Cancer Research and Treatment

, Volume 167, Issue 2, pp 439–450 | Cite as

Acute phase dynamics of circulating tumor cells after paclitaxel and doxorubicin chemotherapy in breast cancer mouse models

  • Yayoi Adachi
  • Mayumi Yoshimura
  • Keiko Nishida
  • Hisanobu Usuki
  • Keiko Shibata
  • Masaya Hattori
  • Naoto Kondo
  • Yasushi Yatabe
  • Hiroji Iwata
  • Toyone Kikumori
  • Yasuhiro Kodera
  • Hayao Nakanishi
Preclinical study



Circulating tumor cells (CTCs) can provide a potentially minimal invasive source for monitoring chemotherapeutic effects. However, detailed in vivo dynamics of CTC after chemotherapy remain largely unknown.


We monitored CTC number and morphology early after chemotherapy using a newly developed cytology-based CTC detection device and triple-negative breast cancer mouse CTC models with spontaneous lung metastatic potential.


Paclitaxel inhibited cell growth of breast cancer cells by mainly G2/M cell cycle arrest and partly apoptosis, whereas doxorubicin inhibited cell growth mainly by apoptosis and partly G2 cell cycle arrest in vitro. The number of CTCs was significantly increased 3–10 days after paclitaxel and doxorubicin chemotherapy and decreased thereafter in two mouse CTC models. The transiently increased CTCs early post-chemotherapy consisted of not only G2/M arrested cells (apoptotic cells), but also morphologically near-intact live cells. This heterogeneous cell population of CTCs was similar to that of primary tumor tissue after chemotherapy.


These results indicate that CTCs can be mobilized from the primary tumor in rapid response to chemotherapy and suggest the possibility that CTC monitoring from both numerical and morphological viewpoints early after chemotherapy using a cytology-based CTC detection device would be a useful diagnostic tool for predicting drug sensitivity/resistance in preclinical and clinical setting.


CTC In vivo dynamics Cytology Breast cancer Chemotherapy Preclinical study 



This study was supported in part by a Grant-in-Aid for Priority Research Project from Knowledge Hub Aichi, Japan and Ministry of Education, Science, Sports, Culture and Technology, Japan.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.

Ethical approval

All animal experiments were performed under the experiment protocol approved by the Ethics Review Committee of the Aichi Cancer Center.


  1. 1.
    Global Burden of Disease Cancer C, Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, Allen C, Hansen G, Woodbrook R, Wolfe C, Hamadeh RR, Moore A, Werdecker A, Gessner BD, Te Ao B, McMahon B, Karimkhani C, Yu C, Cooke GS, Schwebel DC, Carpenter DO, Pereira DM, Nash D, Kazi DS, De Leo D, Plass D, Ukwaja KN, Thurston GD, Yun Jin K, Simard EP, Mills E, Park EK, Catala-Lopez F, deVeber G, Gotay C, Khan G, Hosgood HD, Santos IS, Leasher JL, Singh J, Leigh J, Jonas J, Sanabria J, Beardsley J, Jacobsen KH, Takahashi K, Franklin RC, Ronfani L, Montico M, Naldi L, Tonelli M, Geleijnse J, Petzold M, Shrime MG, Younis M, Yonemoto N, Breitborde N, Yip P, Pourmalek F, Lotufo PA, Esteghamati A, Hankey GJ, Ali R, Lunevicius R, Malekzadeh R, Dellavalle R, Weintraub R, Lucas R, Hay R, Rojas-Rueda D, Westerman R, Sepanlou SG, Nolte S, Patten S, Weichenthal S, Abera SF, Fereshtehnejad SM, Shiue I, Driscoll T, Vasankari T, Alsharif U, Rahimi-Movaghar V, Vlassov VV, Marcenes WS, Mekonnen W, Melaku YA, Yano Y, Artaman A, Campos I, MacLachlan J, Mueller U, Kim D, Trillini M, Eshrati B, Williams HC, Shibuya K, Dandona R, Murthy K, Cowie B, Amare AT, Antonio CA, Castaneda-Orjuela C, van Gool CH, Violante F, Oh IH, Deribe K, Soreide K, Knibbs L, Kereselidze M, Green M, Cardenas R, Roy N, Tillman T, Li Y, Krueger H, Monasta L, Dey S, Sheikhbahaei S, Hafezi-Nejad N, Kumar GA, Sreeramareddy CT, Dandona L, Wang H, Vollset SE, Mokdad A, Salomon JA, Lozano R, Vos T, Forouzanfar M, Lopez A, Murray C, Naghavi M (2015) The Global Burden of Cancer 2013. JAMA Oncol 1(4):505–527. doi: 10.1001/jamaoncol.2015.0735 CrossRefGoogle Scholar
  2. 2.
    Matsuda T, Marugame T, Kamo K, Katanoda K, Ajiki W, Sobue T, Japan Cancer Surveillance Research G (2012) Cancer incidence and incidence rates in Japan in 2006: based on data from 15 population-based cancer registries in the monitoring of cancer incidence in Japan (MCIJ) project. Jpn J Clin Oncol 42(2):139–147. doi: 10.1093/jjco/hyr184 CrossRefPubMedGoogle Scholar
  3. 3.
    Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10(16):5367–5374. doi: 10.1158/1078-0432.CCR-04-0220 CrossRefPubMedGoogle Scholar
  4. 4.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. doi: 10.1038/35021093 CrossRefPubMedGoogle Scholar
  5. 5.
    Dziadyk JM, Sui M, Zhu X, Fan W (2004) Paclitaxel-induced apoptosis may occur without a prior G2/M-phase arrest. Anticancer Res 24(1):27–36PubMedGoogle Scholar
  6. 6.
    Sparreboom A, van Tellingen O, Nooijen WJ, Beijnen JH (1998) Preclinical pharmacokinetics of paclitaxel and docetaxel. Anticancer Drugs 9(1):1–17CrossRefPubMedGoogle Scholar
  7. 7.
    Huang J, Yang J, Maity B, Mayuzumi D, Fisher RA (2011) Regulator of G protein signaling 6 mediates doxorubicin-induced ATM and p53 activation by a reactive oxygen species-dependent mechanism. Cancer Res 71(20):6310–6319. doi: 10.1158/0008-5472.CAN-10-3397 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF (1984) Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 226(4673):466–468CrossRefPubMedGoogle Scholar
  9. 9.
    Rossi S, Basso M, Strippoli A, Dadduzio V, Cerchiaro E, Barile R, D’Argento E, Cassano A, Schinzari G, Barone C (2015) Hormone receptor status and HER2 expression in primary breast cancer compared with synchronous axillary metastases or recurrent metastatic disease. Clin Breast Cancer 15(5):307–312. doi: 10.1016/j.clbc.2015.03.010 CrossRefPubMedGoogle Scholar
  10. 10.
    Yap TA, Lorente D, Omlin A, Olmos D, de Bono JS (2014) Circulating tumor cells: a multifunctional biomarker. Clin Cancer Res 20(10):2553–2568. doi: 10.1158/1078-0432.CCR-13-2664 CrossRefPubMedGoogle Scholar
  11. 11.
    Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT, Brachtel E, Yu M, Chen PI, Morgan B, Trautwein J, Kimura A, Sengupta S, Stott SL, Karabacak NM, Barber TA, Walsh JR, Smith K, Spuhler PS, Sullivan JP, Lee RJ, Ting DT, Luo X, Shaw AT, Bardia A, Sequist LV, Louis DN, Maheswaran S, Kapur R, Haber DA, Toner M (2013) Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med 5(179):179ra147. doi: 10.1126/scitranslmed.3005616 CrossRefGoogle Scholar
  12. 12.
    Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239. doi: 10.1038/nature06385 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Budd GT, Cristofanilli M, Ellis MJ, Stopeck A, Borden E, Miller MC, Matera J, Repollet M, Doyle GV, Terstappen LW, Hayes DF (2006) Circulating tumor cells versus imaging–predicting overall survival in metastatic breast cancer. Clin Cancer Res 12(21):6403–6409. doi: 10.1158/1078-0432.CCR-05-1769 CrossRefPubMedGoogle Scholar
  14. 14.
    Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791. doi: 10.1056/NEJMoa040766 CrossRefPubMedGoogle Scholar
  15. 15.
    Mostert B, Sieuwerts AM, Kraan J, Bolt-de Vries J, van der Spoel P, van Galen A, Peeters DJ, Dirix LY, Seynaeve CM, Jager A, de Jongh FE, Hamberg P, Stouthard JM, Kehrer DF, Look MP, Smid M, Gratama JW, Foekens JA, Martens JW, Sleijfer S (2015) Gene expression profiles in circulating tumor cells to predict prognosis in metastatic breast cancer patients. Ann Oncol 26(3):510–516. doi: 10.1093/annonc/mdu557 CrossRefPubMedGoogle Scholar
  16. 16.
    Polioudaki H, Agelaki S, Chiotaki R, Politaki E, Mavroudis D, Matikas A, Georgoulias V, Theodoropoulos PA (2015) Variable expression levels of keratin and vimentin reveal differential EMT status of circulating tumor cells and correlation with clinical characteristics and outcome of patients with metastatic breast cancer. BMC Cancer 15:399. doi: 10.1186/s12885-015-1386-7 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hall C, Karhade M, Laubacher B, Anderson A, Kuerer H, DeSynder S, Lucci A (2015) Circulating tumor cells after neoadjuvant chemotherapy in stage I–III triple-negative breast cancer. Ann Surg Oncol 22:552–558. doi: 10.1245/s10434-015-4600-6 CrossRefGoogle Scholar
  18. 18.
    Khoo BL, Lee SC, Kumar P, Tan TZ, Warkiani ME, Ow SG, Nandi S, Lim CT, Thiery JP (2015) Short-term expansion of breast circulating cancer cells predicts response to anti-cancer therapy. Oncotarget 6(17):15578–15593CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Peeters DJ, van Dam PJ, Van den Eynden GG, Rutten A, Wuyts H, Pouillon L, Peeters M, Pauwels P, Van Laere SJ, van Dam PA, Vermeulen PB, Dirix LY (2014) Detection and prognostic significance of circulating tumour cells in patients with metastatic breast cancer according to immunohistochemical subtypes. Br J Cancer 110(2):375–383. doi: 10.1038/bjc.2013.743 CrossRefPubMedGoogle Scholar
  20. 20.
    Eliane JP, Repollet M, Luker KE, Brown M, Rae JM, Dontu G, Schott AF, Wicha M, Doyle GV, Hayes DF, Luker GD (2008) Monitoring serial changes in circulating human breast cancer cells in murine xenograft models. Cancer Res 68(14):5529–5532. doi: 10.1158/0008-5472.CAN-08-0630 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yusa A, Toneri M, Masuda T, Ito S, Yamamoto S, Okochi M, Kondo N, Iwata H, Yatabe Y, Ichinosawa Y, Kinuta S, Kondo E, Honda H, Arai F, Nakanishi H (2014) Development of a new rapid isolation device for circulating tumor cells (CTCs) using 3D palladium filter and its application for genetic analysis. PLoS ONE 9(2):e88821. doi: 10.1371/journal.pone.0088821 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DA, Glennie MJ, Kelland LR, Robinson V, Stratford IJ, Tozer GM, Watson S, Wedge SR, Eccles SA, Committee of the National Cancer Research I (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102(11):1555–1577. doi: 10.1038/sj.bjc.6605642 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hoff J (2000) Methods of blood collection in the mouse. Lab Anim 29(10):47–53Google Scholar
  24. 24.
    Morton D, Abbot D, Barclay R, Ewbank R, Gask D, Heath M, Mattic S, Poole T, Seamer J, Southee J, Thompson A, Trussell B, West C, Jennings M (1993) Removal of blood from laboratory mammals and birds. First report of the BVA/FRAME/RSPCA/UFAW Joint Working Group on Refinement. Lab Anim 27(1):1–22. doi: 10.1258/002367793781082412 CrossRefGoogle Scholar
  25. 25.
    Barradas AM, Terstappen LW (2013) Towards the biological understanding of CTC: capture technologies, definitions and potential to create metastasis. Cancers (Basel) 5(4):1619–1642. doi: 10.3390/cancers5041619 CrossRefGoogle Scholar
  26. 26.
    Desitter I, Guerrouahen BS, Benali-Furet N, Wechsler J, Janne PA, Kuang Y, Yanagita M, Wang L, Berkowitz JA, Distel RJ, Cayre YE (2011) A new device for rapid isolation by size and characterization of rare circulating tumor cells. Anticancer Res 31(2):427–441PubMedGoogle Scholar
  27. 27.
    Funaki S, Sawabata N, Nakagiri T, Shintani Y, Inoue M, Kadota Y, Minami M, Okumura M (2011) Novel approach for detection of isolated tumor cells in pulmonary vein using negative selection method: morphological classification and clinical implications. Eur J Cardiothorac Surg 40(2):322–327. doi: 10.1016/j.ejcts.2010.11.029 PubMedGoogle Scholar
  28. 28.
    Torphy RJ, Tignanelli CJ, Kamande JW, Moffitt RA, Herrera Loeza SG, Soper SA, Yeh JJ (2014) Circulating tumor cells as a biomarker of response to treatment in patient-derived xenograft mouse models of pancreatic adenocarcinoma. PLoS ONE 9(2):e89474. doi: 10.1371/journal.pone.0089474 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rossi E, Fassan M, Aieta M, Zilio F, Celadin R, Borin M, Grassi A, Troiani L, Basso U, Barile C, Sava T, Lanza C, Miatello L, Jirillo A, Rugge M, Indraccolo S, Cristofanilli M, Amadori A, Zamarchi R (2012) Dynamic changes of live/apoptotic circulating tumour cells as predictive marker of response to sunitinib in metastatic renal cancer. Br J Cancer 107(8):1286–1294. doi: 10.1038/bjc.2012.388 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bidard FC, Peeters DJ, Fehm T, Nole F, Gisbert-Criado R, Mavroudis D, Grisanti S, Generali D, Garcia-Saenz JA, Stebbing J, Caldas C, Gazzaniga P, Manso L, Zamarchi R, de Lascoiti AF, De Mattos-Arruda L, Ignatiadis M, Lebofsky R, van Laere SJ, Meier-Stiegen F, Sandri MT, Vidal-Martinez J, Politaki E, Consoli F, Bottini A, Diaz-Rubio E, Krell J, Dawson SJ, Raimondi C, Rutten A, Janni W, Munzone E, Caranana V, Agelaki S, Almici C, Dirix L, Solomayer EF, Zorzino L, Johannes H, Reis-Filho JS, Pantel K, Pierga JY, Michiels S (2014) Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol 15(4):406–414. doi: 10.1016/S1470-2045(14)70069-5 CrossRefPubMedGoogle Scholar
  31. 31.
    Martin OA, Anderson RL, Russell PA, Cox RA, Ivashkevich A, Swierczak A, Doherty JP, Jacobs DH, Smith J, Siva S, Daly PE, Ball DL, Martin RF, MacManus MP (2014) Mobilization of viable tumor cells into the circulation during radiation therapy. Int J Radiat Oncol Biol Phys 88(2):395–403. doi: 10.1016/j.ijrobp.2013.10.033 CrossRefPubMedGoogle Scholar
  32. 32.
    Martin OA, Anderson RL, Narayan K, MacManus MP (2017) Does the mobilization of circulating tumour cells during cancer therapy cause metastasis? Nat Rev Clin Oncol 14(1):32–44. doi: 10.1038/nrclinonc.2016.128 CrossRefPubMedGoogle Scholar
  33. 33.
    Inhestern J, Oertel K, Stemmann V, Schmalenberg H, Dietz A, Rotter N, Veit J, Gorner M, Sudhoff H, Junghanss C, Wittekindt C, Pachmann K, Guntinas-Lichius O (2015) Prognostic role of circulating tumor cells during induction chemotherapy followed by curative surgery combined with postoperative radiotherapy in patients with locally advanced oral and oropharyngeal squamous cell cancer. PLoS ONE 10(7):e0132901. doi: 10.1371/journal.pone.0132901 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Panet E, Ozer E, Mashriki T, Lazar I, Itzkovich D, Tzur A (2015) Purifying cytokinetic cells from an asynchronous population. Sci Rep 5:13230. doi: 10.1038/srep13230 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Adams DL, Adams DK, Stefansson S, Haudenschild C, Martin SS, Charpentier M, Chumsri S, Cristofanilli M, Tang CM, Alpaugh RK (2016) Mitosis in circulating tumor cells stratifies highly aggressive breast carcinomas. Breast Cancer Res 18(1):44–50. doi: 10.1186/s13058-016-0706-4 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Deutsch TM, Riethdorf S, Nees J, Hartkopf AD, Schonfisch B, Domschke C, Sprick MR, Schutz F, Brucker SY, Stefanovic S, Sohn C, Pantel K, Trumpp A, Schneeweiss A, Wallwiener M (2016) Impact of apoptotic circulating tumor cells (aCTC) in metastatic breast cancer. Breast Cancer Res Treat 160(2):277–290. doi: 10.1007/s10549-016-3997-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Yayoi Adachi
    • 1
    • 2
  • Mayumi Yoshimura
    • 3
  • Keiko Nishida
    • 3
  • Hisanobu Usuki
    • 4
  • Keiko Shibata
    • 4
  • Masaya Hattori
    • 2
  • Naoto Kondo
    • 2
  • Yasushi Yatabe
    • 3
  • Hiroji Iwata
    • 2
  • Toyone Kikumori
    • 1
  • Yasuhiro Kodera
    • 5
  • Hayao Nakanishi
    • 3
    • 4
  1. 1.Department of Transplantation and Endocrine SurgeryNagoya University Graduate School of MedicineNagoyaJapan
  2. 2.Department of Breast OncologyAichi Cancer Center Central HospitalNagoyaJapan
  3. 3.Department of Pathology and Molecular DiagnosticsAichi Cancer Center Central HospitalNagoyaJapan
  4. 4.Laboratory of Pathology and Clinical ResearchAichi Cancer Center Aichi HospitalOkazakiJapan
  5. 5.Department of Gastroenterological SurgeryNagoya University Graduate School of MedicineNagoyaJapan

Personalised recommendations