Breast Cancer Research and Treatment

, Volume 162, Issue 1, pp 127–137 | Cite as

Prognostic significance of S100A4-expression and subcellular localization in early-stage breast cancer

  • Eivind Valen Egeland
  • Kjetil Boye
  • Daehoon Park
  • Marit Synnestvedt
  • Torill Sauer
  • The Oslo Breast Cancer Consortium (OSBREAC)
  • Bjørn Naume
  • Elin Borgen
  • Gunhild M. Mælandsmo



Prognostic factors are useful in order to identify early-stage breast cancer patients who might benefit from adjuvant treatment. The metastasis-promoting protein S100A4 has previously been associated with poor prognosis in breast cancer patients. The protein is expressed in diverse subcellular compartments, including the cytoplasm, extracellular space, and nucleus. Nuclear expression is an independent predictor of poor outcome in several cancer types, but the significance of subcellular expression has not yet been assessed in breast cancer.


Nuclear and cytoplasmic expression of S100A4 was assessed by immunohistochemistry in prospectively collected tumor samples from early-stage breast cancer patients using tissue microarrays.


In patients not receiving adjuvant systemic therapy, nuclear or cytoplasmic expression was found in 44/291 tumors (15%). Expression of either nuclear or cytoplasmic S100A4 was associated with histological grade III, triple-negative subtype, and Ki-67-expression. Patients with S100A4-positive tumors had inferior metastasis-free and overall survival compared to S100A4-negative. When expression was analyzed separately, nuclear S100A4 was a significant predictor of outcome, while cytoplasmic was not. In patients who received adjuvant treatment 23/300 tumors (8%) were S100A4-positive, but no tumors displayed nuclear staining alone. S100A4-expression was strongly associated with histological grade III and triple-negative subtype. Although not significant, metastasis-free and overall survival was numerically reduced in patients with S100A4-positive tumors.


S100A4-expression was associated with poor outcome in early-stage breast cancer, but the low percentage of positive tumors and the modest survival differences imply that the clinical utility in selection of patients for adjuvant treatment is limited.


Breast cancer S100A4 Nuclear localization Prognostic marker 



We would like to thank Elisabeth Emilsen for excellent technical assistance.


This work was supported by the Cancer Society of Norway (Project no [#4218523581] to EVE).

People involved in the Oslo Breast Cancer Consortium (group authorship)

Torill Sauer, Jürgen Geisler, Solveig Hofvind, Tone F Bathen, Elin Borgen, Anne‐Lise Børresen‐Dale, Olav Engebråten, Øystein Fodstad, Øystein Garred, Gry A Geitvik, Rolf Kåresen, Bjørn Naume, Gunhild M Mælandsmo, Hege G Russnes, Ellen Schlichting, Therese Sørlie, Ole C Lingjærde, Vessela N Kristensen, Kristine K Sahlberg, Helle K Skjerven, Britt Fritzman.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Ethics approval

The project was approved by the Regional Ethics Committee of South-East Norway, and all procedures performed were in accordance with their ethical standards and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Written informed consent was obtained from all patients enrolled in the study.

Supplementary material

10549_2016_4096_MOESM1_ESM.pdf (29.6 mb)
Supplementary material 1 (PDF 30339 kb)


  1. 1.
    Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V, Godwin J, Gray R, Hicks C, James S, MacKinnon E, McGale P, McHugh T, Peto R, Taylor C, Wang Y (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet (London, England) 366(9503):2087–2106. doi: 10.1016/s0140-6736(05)67887-7
  2. 2.
    Taneja P, Maglic D, Kai F, Zhu S, Kendig RD, Fry EA, Inoue K (2010) Classical and Novel Prognostic Markers for Breast Cancer and their Clinical Significance. Clin Med Insights Oncol 4:15–34PubMedPubMedCentralGoogle Scholar
  3. 3.
    Boye K, Maelandsmo GM (2010) S100A4 and metastasis: a small actor playing many roles. Am J Pathol 176(2):528–535. doi: 10.2353/ajpath.2010.090526 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sack U, Walther W, Scudiero D, Selby M, Aumann J, Lemos C, Fichtner I, Schlag PM, Shoemaker RH, Stein U (2011) S100A4-induced cell motility and metastasis is restricted by the Wnt/beta-catenin pathway inhibitor calcimycin in colon cancer cells. Mol Biol Cell 22(18):3344–3354. doi: 10.1091/mbc.E10-09-0739 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Keirsebilck A, Bonne S, Bruyneel E, Vermassen P, Lukanidin E, Mareel M, van Roy F (1998) E-cadherin and metastasin (mts-1/S100A4) expression levels are inversely regulated in two tumor cell families. Cancer Res 58(20):4587–4591PubMedGoogle Scholar
  6. 6.
    Dahlmann M, Okhrimenko A, Marcinkowski P, Osterland M, Herrmann P, Smith J, Heizmann CW, Schlag PM, Stein U (2014) RAGE mediates S100A4-induced cell motility via MAPK/ERK and hypoxia signaling and is a prognostic biomarker for human colorectal cancer metastasis. Oncotarget 5(10):3220–3233CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ambartsumian N, Klingelhofer J, Grigorian M, Christensen C, Kriajevska M, Tulchinsky E, Georgiev G, Berezin V, Bock E, Rygaard J, Cao R, Cao Y, Lukanidin E (2001) The metastasis-associated Mts1(S100A4) protein could act as an angiogenic factor. Oncogene 20(34):4685–4695. doi: 10.1038/sj.onc.1204636 CrossRefPubMedGoogle Scholar
  8. 8.
    Donato R (2003) Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 60(6):540–551. doi: 10.1002/jemt.10296 CrossRefPubMedGoogle Scholar
  9. 9.
    Berge G, Pettersen S, Grotterod I, Bettum IJ, Boye K, Maelandsmo GM (2011) Osteopontin—an important downstream effector of S100A4-mediated invasion and metastasis. Int J Cancer 129(4):780–790. doi: 10.1002/ijc.25735 CrossRefPubMedGoogle Scholar
  10. 10.
    Bjornland K, Winberg JO, Odegaard OT, Hovig E, Loennechen T, Aasen AO, Fodstad O, Maelandsmo GM (1999) S100A4 involvement in metastasis: deregulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in osteosarcoma cells transfected with an anti-S100A4 ribozyme. Cancer Res 59(18):4702–4708PubMedGoogle Scholar
  11. 11.
    Schmidt-Hansen B, Ornas D, Grigorian M, Klingelhofer J, Tulchinsky E, Lukanidin E, Ambartsumian N (2004) Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity. Oncogene 23(32):5487–5495. doi: 10.1038/sj.onc.1207720 CrossRefPubMedGoogle Scholar
  12. 12.
    Okada H, Danoff TM, Kalluri R, Neilson EG (1997) Early role of Fsp1 in epithelial-mesenchymal transformation. Am J Physiol 273(4 Pt 2):F563–F574PubMedGoogle Scholar
  13. 13.
    Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, Neilson EG (1995) Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130(2):393–405CrossRefPubMedGoogle Scholar
  14. 14.
    Bettum IJ, Vasiliauskaite K, Nygaard V, Clancy T, Pettersen SJ, Tenstad E, Maelandsmo GM, Prasmickaite L (2014) Metastasis-associated protein S100A4 induces a network of inflammatory cytokines that activate stromal cells to acquire pro-tumorigenic properties. Cancer Lett 344(1):28–39. doi: 10.1016/j.canlet.2013.10.036 CrossRefPubMedGoogle Scholar
  15. 15.
    Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–659. doi: 10.1016/j.cell.2009.06.034 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Jorgen Labori K, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature. doi: 10.1038/nature15756 PubMedPubMedCentralGoogle Scholar
  17. 17.
    Ilg EC, Schafer BW, Heizmann CW (1996) Expression pattern of S100 calcium-binding proteins in human tumors. Int J Cancer 68(3):325–332. doi: 10.1002/(sici)1097-0215(19961104)68:3<325:aid-ijc10>;2-7 CrossRefPubMedGoogle Scholar
  18. 18.
    Takenaga K, Nakamura Y, Endo H, Sakiyama S (1994) Involvement of S100-related calcium-binding protein pEL98 (or mts1) in cell motility and tumor cell invasion. Jpn J Cancer Res 85(8):831–839CrossRefPubMedGoogle Scholar
  19. 19.
    Rudland PS, Platt-Higgins A, Renshaw C, West CR, Winstanley JH, Robertson L, Barraclough R (2000) Prognostic significance of the metastasis-inducing protein S100A4 (p9Ka) in human breast cancer. Cancer Res 60(6):1595–1603PubMedGoogle Scholar
  20. 20.
    de Silva Rudland S, Martin L, Roshanlall C, Winstanley J, Leinster S, Platt-Higgins A, Carroll J, West C, Barraclough R, Rudland P (2006) Association of S100A4 and osteopontin with specific prognostic factors and survival of patients with minimally invasive breast cancer. Clin Cancer Res 12(4):1192–1200. doi: 10.1158/1078-0432.ccr-05-1580 CrossRefGoogle Scholar
  21. 21.
    Lee WY, Su WC, Lin PW, Guo HR, Chang TW, Chen HH (2004) Expression of S100A4 and Met: potential predictors for metastasis and survival in early-stage breast cancer. Oncology 66(6):429–438. doi: 10.1159/000079496 CrossRefPubMedGoogle Scholar
  22. 22.
    Pedersen KB, Nesland JM, Fodstad O, Maelandsmo GM (2002) Expression of S100A4, E-cadherin, alpha- and beta-catenin in breast cancer biopsies. Br J Cancer 87(11):1281–1286. doi: 10.1038/sj.bjc.6600624 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Boye K, Nesland JM, Sandstad B, Maelandsmo GM, Flatmark K (2010) Nuclear S100A4 is a novel prognostic marker in colorectal cancer. Eur J Cancer (Oxford, England: 1990) 46(16):2919–2925. doi: 10.1016/j.ejca.2010.07.013
  24. 24.
    Flatmark K, Pedersen KB, Nesland JM, Rasmussen H, Aamodt G, Mikalsen SO, Bjornland K, Fodstad O, Maelandsmo GM (2003) Nuclear localization of the metastasis-related protein S100A4 correlates with tumour stage in colorectal cancer. J Pathol 200(5):589–595. doi: 10.1002/path.1381 CrossRefPubMedGoogle Scholar
  25. 25.
    Fabris L, Cadamuro M, Moserle L, Dziura J, Cong X, Sambado L, Nardo G, Sonzogni A, Colledan M, Furlanetto A, Bassi N, Massani M, Cillo U, Mescoli C, Indraccolo S, Rugge M, Okolicsanyi L, Strazzabosco M (2011) Nuclear expression of S100A4 calcium-binding protein increases cholangiocarcinoma invasiveness and metastasization. Hepatology (Baltimore, Md) 54(3):890–899. doi: 10.1002/hep.24466
  26. 26.
    Kikuchi N, Horiuchi A, Osada R, Imai T, Wang C, Chen X, Konishi I (2006) Nuclear expression of S100A4 is associated with aggressive behavior of epithelial ovarian carcinoma: an important autocrine/paracrine factor in tumor progression. Cancer Sci 97(10):1061–1069. doi: 10.1111/j.1349-7006.2006.00295.x CrossRefPubMedGoogle Scholar
  27. 27.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100(2):229–235. doi: 10.1007/s10549-006-9242-8 CrossRefPubMedGoogle Scholar
  28. 28.
    Naume B, Borgen E, Kvalheim G, Karesen R, Qvist H, Sauer T, Kumar T, Nesland JM (2001) Detection of isolated tumor cells in bone marrow in early-stage breast carcinoma patients: comparison with preoperative clinical parameters and primary tumor characteristics. Clin Cancer Res 7(12):4122–4129PubMedGoogle Scholar
  29. 29.
    Wiedswang G, Borgen E, Karesen R, Kvalheim G, Nesland JM, Qvist H, Schlichting E, Sauer T, Janbu J, Harbitz T, Naume B (2003) Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J Clin Oncol 21(18):3469–3478. doi: 10.1200/jco.2003.02.009 CrossRefPubMedGoogle Scholar
  30. 30.
    Synnestvedt M, Borgen E, Russnes HG, Kumar NT, Schlichting E, Giercksky KE, Karesen R, Nesland JM, Naume B (2013) Combined analysis of vascular invasion, grade, HER2 and Ki67 expression identifies early breast cancer patients with questionable benefit of systemic adjuvant therapy. Acta Oncol (Stockholm, Sweden) 52(1):91–101. doi: 10.3109/0284186x.2012.713508
  31. 31.
    Flatmark K, Maelandsmo GM, Mikalsen SO, Nustad K, Varaas T, Rasmussen H, Meling GI, Fodstad O, Paus E (2004) Immunofluorometric assay for the metastasis-related protein S100A4: release of S100A4 from normal blood cells prohibits the use of S100A4 as a tumor marker in plasma and serum. Tumour Biol 25(1–2):31–40. doi: 10.1159/000077721 CrossRefPubMedGoogle Scholar
  32. 32.
    Boye K, Jacob H, Frikstad KA, Nesland JM, Maelandsmo GM, Dahl O, Nesbakken A, Flatmark K (2016) Prognostic significance of S100A4 expression in stage II and III colorectal cancer: results from a population-based series and a randomized phase III study on adjuvant chemotherapy. Cancer Med 5(8):1840–1849. doi: 10.1002/cam4.766 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ingebrigtsen VA, Boye K, Nesland JM, Nesbakken A, Flatmark K, Fodstad O (2014) B7-H3 expression in colorectal cancer: associations with clinicopathological parameters and patient outcome. BMC Cancer 14:602. doi: 10.1186/1471-2407-14-602 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ismail NI, Kaur G, Hashim H, Hassan MS (2008) S100A4 overexpression proves to be independent marker for breast cancer progression. Cancer Cell Int 8:12. doi: 10.1186/1475-2867-8-12 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Takenaga K, Nakanishi H, Wada K, Suzuki M, Matsuzaki O, Matsuura A, Endo H (1997) Increased expression of S100A4, a metastasis-associated gene, in human colorectal adenocarcinomas. Clin Cancer Res 3(12 Pt 1):2309–2316PubMedGoogle Scholar
  36. 36.
    Heizmann CW (2002) The multifunctional S100 protein family. Methods Mol Biol (Clifton, NJ) 172:69–80. doi: 10.1385/1-59259-183-3:069
  37. 37.
    Egeland EV, Boye K, Pettersen SJ, Haugen MH, Oyjord T, Malerod L, Flatmark K, Maelandsmo GM (2015) Enrichment of nuclear S100A4 during G2/M in colorectal cancer cells: possible association with cyclin B1 and centrosomes. Clin Exp Metastasis 32(8):755–767. doi: 10.1007/s10585-015-9742-1 CrossRefPubMedGoogle Scholar
  38. 38.
    Cadamuro M, Spagnuolo G, Sambado L, Indraccolo S, Nardo G, Rosato A, Brivio S, Caslini C, Stecca T, Massani M, Bassi N, Novelli E, Spirli C, Fabris L, Strazzabosco M (2016) Low-dose paclitaxel reduces S100A4 nuclear import to inhibit invasion and hematogenous metastasis of cholangiocarcinoma. Cancer Res 76(16):4775–4784. doi: 10.1158/0008-5472.can-16-0188 CrossRefPubMedGoogle Scholar
  39. 39.
    Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196. doi: 10.1038/nrm3758 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bouris P, Skandalis SS, Piperigkou Z, Afratis N, Karamanou K, Aletras AJ, Moustakas A, Theocharis AD, Karamanos NK (2015) Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells. Matrix Biol 43:42–60. doi: 10.1016/j.matbio.2015.02.008 CrossRefPubMedGoogle Scholar
  41. 41.
    Andersen K, Mori H, Fata J, Bascom J, Oyjord T, Maelandsmo GM, Bissell M (2011) The metastasis-promoting protein S100A4 regulates mammary branching morphogenesis. Dev Biol 352(2):181–190. doi: 10.1016/j.ydbio.2010.12.033 CrossRefPubMedGoogle Scholar
  42. 42.
    Grum-Schwensen B, Klingelhofer J, Beck M, Bonefeld CM, Hamerlik P, Guldberg P, Grigorian M, Lukanidin E, Ambartsumian N (2015) S100A4-neutralizing antibody suppresses spontaneous tumor progression, pre-metastatic niche formation and alters T-cell polarization balance. BMC Cancer 15:44. doi: 10.1186/s12885-015-1034-2 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pedersen KB, Andersen K, Fodstad O, Maelandsmo GM (2004) Sensitization of interferon-gamma induced apoptosis in human osteosarcoma cells by extracellular S100A4. BMC Cancer 4:52. doi: 10.1186/1471-2407-4-52 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalNydalen, OsloNorway
  2. 2.Department of Oncology, The Norwegian Radium HospitalOslo University HospitalOsloNorway
  3. 3.Department of Pathology, The Norwegian Radium HospitalOslo University HospitalOsloNorway
  4. 4.Department of PathologyVestre Viken Health TrustDrammenNorway
  5. 5.Department of PathologyAkershus University HospitalLørenskogNorway
  6. 6.Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway
  7. 7.Department of PharmacyUniversity of TromsøTromsøNorway

Personalised recommendations