Breast Cancer Research and Treatment

, Volume 159, Issue 3, pp 575–583 | Cite as

Multiplexed imaging reveals heterogeneity of PI3K/MAPK network signaling in breast lesions of known PIK3CA genotype

  • Thomas Jacob
  • Joe W. Gray
  • Megan Troxell
  • Tania Q. Vu
Brief Report



Activating genetic changes in the phosphatidylinositol-3-kinase (PI3K) signaling pathway are found in over half of invasive breast cancers (IBCs). Previously, we discovered numerous hotspot PIK3CA mutations in proliferative breast lesions. Here, we investigate the spatial nature of PI3K pathway signaling and its relationship with PI3K genotype in breast lesions.


We identified PI3K phosphosignaling network signatures in columnar cell change (CCL), usual ductal hyperplasia (UDH), ductal carcinoma in situ (DCIS), and IBC in 26 lesions of known PIK3CA genotype from 10 human breast specimens using a hyperspectral-based multiplexed tissue imaging platform (MTIP) to simultaneously quantitate PI3K/MAPK pathway targets (pAKT473, pAKT308, pPRAS40, pS6, and pERK) in FFPE tissue, with single-cell resolution.


We found that breast lesional epithelia contained spatially heterogeneous patterns of PI3K pathway phosphoprotein signatures, even within microscopic areas of CCL, UDH, DCIS, and IBC. Most lesions contained 3–12 unique phosphoprotein signatures within the same microscopic field. The dominant phosphoprotein signature for each lesion was not well correlated with lesion genotype or lesion histology, yet samples from the same patient tended to group together. Further, 5 UDH/CCL lesions across different patients had a common phosphosignature at the epithelial–stromal interface (possible myoepithelial cells) that was distinct from both the adjacent lesional epithelium and distinct from adjacent stroma.


We present the first spatial mapping of PI3K phosphoprotein networks in proliferative breast lesions and demonstrate complex PI3K signaling heterogeneity that defies simple correlation between PIK3CA genotype and phosphosignal pattern.


PIK3CA Phosphatidylinositol-3-kinase Usual ductal hyperplasia Columnar cell change Hyperspectral imaging 



This project was supported by NIH Grant #P30-CA069533 and a OHSU pilot grant from the Knight Cancer Institute and Oregon Center for Spatial Systems Biomedicine. We thank Drs. Esteban Roberts, Karl Garsha, Michael Barnes, and Kandavel Shanmugam (Ventana-Roche) for stimulating discussions and the use of the MTIP platform. We acknowledge the helpful technical assistance of Dominic Mills in dendrogram analysis. A small subset of invasive tumors with PIK3CA E545K mutations was previously reported [18] with different scope of data analysis and without a comparative group of PIK3CA exon 20-mutated invasive cancers or noninvasive lesions.

Compliance with ethical standards

Conflict of interest

Thomas Jacob, Joe W. Gray, Megan Troxell, and Tania Q. Vu declare that they have no conflict of interest.

Compliance of ethical statement

Tissue specimens were derived from breast precursor lesions, with an IRB-approved protocol.

Informed consent

In these retrospective studies, deidentified materials were used; informed consent was waived by an institutional IRB-approved protocol.


  1. 1.
    Zhao L, Vogt PK (2008) Class I PI3K in oncogenic cellular transformation. Oncogene 27(41):5486–5496CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Baselga J (2011) Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist 16(Suppl 1):12–19CrossRefPubMedGoogle Scholar
  3. 3.
    Zardavas D, Phillips WA, Loi S (2014) PIK3CA mutations in breast cancer: reconciling findings from preclinical and clinical data. Breast Cancer Res 16(1):201CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Arnedos M et al (2015) Precision medicine for metastatic breast cancer-limitations and solutions. Nat Rev Clin Oncol 12(12):693–704CrossRefPubMedGoogle Scholar
  5. 5.
    Klarenbeek S, van Miltenburg MH, Jonkers J (2013) Genetically engineered mouse models of PI3K signaling in breast cancer. Mol Oncol 7(2):146–164CrossRefPubMedGoogle Scholar
  6. 6.
    Gonzalez-Angulo AM, Blumenschein GR Jr (2013) Defining biomarkers to predict sensitivity to PI3K/Akt/mTOR pathway inhibitors in breast cancer. Cancer Treat Rev 39(4):313–320CrossRefPubMedGoogle Scholar
  7. 7.
    Dunlap J et al (2010) Phosphatidylinositol-3-kinase and AKT1 mutations occur early in breast carcinoma. Breast Cancer Res Treat 120(2):409–418CrossRefPubMedGoogle Scholar
  8. 8.
    Miron A et al (2010) PIK3CA mutations in in situ and invasive breast carcinomas. Cancer Res 70(14):5674–5678CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Li H et al (2010) PIK3CA mutations mostly begin to develop in ductal carcinoma of the breast. Exp Mol Pathol 88(1):150–155CrossRefPubMedGoogle Scholar
  10. 10.
    Kalinsky K et al (2011) PIK3CA mutations rarely demonstrate genotypic intratumoral heterogeneity and are selected for in breast cancer progression. Breast Cancer Res Treat 129(2):635–643CrossRefPubMedGoogle Scholar
  11. 11.
    Ang DC et al (2014) Frequent phosphatidylinositol-3-kinase mutations in proliferative breast lesions. Mod Pathol 27(5):740–750CrossRefPubMedGoogle Scholar
  12. 12.
    Newburger DE et al (2013) Genome evolution during progression to breast cancer. Gen Res 23(7):1097–1108CrossRefGoogle Scholar
  13. 13.
    Jahn SW et al (2016) Mutation profiling of usual ductal hyperplasia of the breast reveals activating mutations predominantly at different levels of the PI3K/AKT/mTOR pathway. Am J Pathol 186(1):15–23CrossRefPubMedGoogle Scholar
  14. 14.
    Isakoff SJ et al (2005) Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res 65(23):10992–11000CrossRefPubMedGoogle Scholar
  15. 15.
    Dogruluk T et al (2015) Identification of variant-specific functions of PIK3CA by rapid phenotyping of rare mutations. Cancer Res 75(24):5341–5354CrossRefPubMedGoogle Scholar
  16. 16.
    Stemke-Hale K et al (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68(15):6084–6091CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Korkola JE et al (2015) Decoupling of the PI3K pathway via mutation necessitates combinatorial treatment in HER2 + breast cancer. PLoS ONE 10(7):e0133219CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Roberts E, et al Mapping cancer signaling networks by an integrated multiplexed tissue imaging platform. Technology (in publication) Google Scholar
  19. 19.
    Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic press, New YorkGoogle Scholar
  20. 20.
    Gerlinger M et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Shah SP et al (2009) Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461(7265):809–813CrossRefPubMedGoogle Scholar
  22. 22.
    Jensen Dupont et al (2011) PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clin Cancer Res 17(4):667–677CrossRefGoogle Scholar
  23. 23.
    Da Silva L et al (2010) HER3 and downstream pathways are involved in colonization of brain metastases from breast cancer. Breast Cancer Res 12(4):R46CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gonzalez-Angulo AM et al (2011) PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer. Mol Cancer Ther 10(6):1093–1101CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Arthur LM et al (2014) Changes in PIK3CA mutation status are not associated with recurrence, metastatic disease or progression in endocrine-treated breast cancer. Breast Cancer Res Treat 147(1):211–219CrossRefPubMedGoogle Scholar
  26. 26.
    Lacroix-Triki M et al (2003) Value of cytokeratin 5/6 immunostaining using D5/16 B4 antibody in the spectrum of proliferative intraepithelial lesions of the breast. A comparative study with 34betaE12 antibody. Virchows Arch 442(6):548–554PubMedGoogle Scholar
  27. 27.
    Lee AH (2013) Use of immunohistochemistry in the diagnosis of problematic breast lesions. J Clin Pathol 66(6):471–477CrossRefPubMedGoogle Scholar
  28. 28.
    Almendro V et al (2014) Genetic and phenotypic diversity in breast tumor metastases. Cancer Res 74(5):1338–1348CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Janiszewska M et al (2015) In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer. Nat Genet 47(10):1212–1219CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hammond ME et al (2010) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med 134(7):e48–e72PubMedGoogle Scholar
  31. 31.
    Polyak K et al (2005) Do myoepithelial cells hold the key for breast tumor progression? J Mammary Gland Biol Neoplasia. 10(3):231–247CrossRefPubMedGoogle Scholar
  32. 32.
    Russell TD et al (2015) Myoepithelial Cell differentiation markers in ductal carcinoma in situ progression. Am J Pathol. 185(11):3076–3089CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Thomas Jacob
    • 1
  • Joe W. Gray
    • 1
    • 2
    • 3
  • Megan Troxell
    • 3
    • 4
    • 5
  • Tania Q. Vu
    • 1
    • 2
    • 3
  1. 1.Department of Biomedical EngineeringOregon Health & Science UniversityPortlandUSA
  2. 2.OHSU Center for Spatial Systems BiosciencePortlandUSA
  3. 3.The Knight Cancer InstituteOregon Health & Science UniversityPortlandUSA
  4. 4.Department of PathologyOregon Health & Science UniversityPortlandUSA
  5. 5.Department of PathologyStanford University Medical CenterStanfordUSA

Personalised recommendations