Breast Cancer Research and Treatment

, Volume 159, Issue 1, pp 139–149 | Cite as

Patterns of change over time and history of the inflammatory potential of diet and risk of breast cancer among postmenopausal women

  • Fred K. Tabung
  • Susan E. Steck
  • Angela D. Liese
  • Jiajia Zhang
  • Yunsheng Ma
  • Karen C. Johnson
  • Dorothy S. Lane
  • Lihong Qi
  • Linda Snetselaar
  • Mara Z. Vitolins
  • Judith K. Ockene
  • James R. Hebert


We utilized the dietary inflammatory index (DII) to investigate associations between patterns of change in, and history of the inflammatory potential of diet and risk of breast cancer in the Women’s Health Initiative (WHI). We included 70,998 postmenopausal women aged 50–79 years recruited from 1993 to 1998 into the WHI Observational Study and Dietary Modification trial control group and followed through August 29, 2014. We utilized data from food frequency questionnaires administered at baseline and Year 3, to calculate average DII scores, patterns of change in DII, and used these measures in multivariable-adjusted Cox regression models to estimate hazards ratios (HR) and 95 % confidence intervals (CI) for incident invasive breast cancer and its subtypes. After 1,093,947 person-years of follow-up, 3471 cases of invasive breast cancer were identified. There was no substantial association between average DII scores or patterns of change in DII and risk of overall invasive breast cancer (HR, 1.03; 95 % CI, 0.90, 1.17; P-trend = 0.79; comparing extreme average DII quintiles). However, there was a significant nonlinear association between average DII scores and the ER−, PR−, HER2+, subtype (HR, 2.37; 95 % CI, 1.08, 5.20; P-trend = 0.18; comparing extreme quintiles). For patterns of change in DII, the age-adjusted association with ER−, PR−, HER2+ subtype comparing women in the proinflammatory stable to those in the anti-inflammatory stable categories (HR, 1.82; 95 % CI, 1.06, 3.13) persisted in the multivariable-adjusted model but was less precise (HR, 1.85; 95 % CI, 0.96, 3.55; P = 0.06). Dietary inflammatory potential may differentially influence the development of specific breast cancer phenotypes.


Breast cancer Dietary patterns Inflammation Diet Epidemiology 



Dr. Tabung and Dr. Hebert were supported by National Cancer Institute Grants Numbers F31 CA177255 and K05 CA136975, respectively. The WHI program was funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contracts HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, and HHSN271201100004C.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


Dr. James R. Hébert owns controlling interest in Connecting Health Innovations LLC (CHI), a company planning to license the right to his invention of the dietary inflammatory index (DII) from the University of South Carolina in order to develop computer and smart phone applications for patient counseling and dietary intervention in clinical settings.

Supplementary material

10549_2016_3925_MOESM1_ESM.doc (27 kb)
Supplementary material 1 (DOC 27kb)
10549_2016_3925_MOESM2_ESM.xlsx (114 kb)
Supplementary material 2 (XLSX 114kb)


  1. 1.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29. doi: 10.3322/caac.21254 CrossRefPubMedGoogle Scholar
  2. 2.
    Nelson HD, Zakher B, Cantor A, Fu R, Griffin J, O’Meara ES, Buist DS, Kerlikowske K, van Ravesteyn NT, Trentham-Dietz A, Mandelblatt JS, Miglioretti DL (2012) Risk Factors for Breast Cancer for Women Age 40 to 49: A Systematic Review and Meta-analysis. Ann Intern Med 156:635–648. doi: 10.1059/0003-4819-156-9-201205010-00006 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Scoccianti C, Lauby-Secretan B, Bello PY, Chajes V, Romieu I (2014) Female Breast Cancer and Alcohol Consumption. Am J Prev Med 46:S16–S25. doi: 10.1016/j.amepre.2013.10.031 CrossRefPubMedGoogle Scholar
  4. 4.
    Collaborative Group on Hormonal Factors in Breast Cancer (2002) Alcohol, tobacco and breast cancer – collaborative reanalysis of individual data from 53 epidemiological studies, including 58 515 women with breast cancer and 95 067 women without the disease. Br J Cancer 87:1234–1245. doi: 10.1038/sj.bjc.6600596 CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Guo J, Wei W, Zhan L (2015) Red and processed meat intake and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res Treat 151:191–198. doi: 10.1007/s10549-015-3380-9 CrossRefPubMedGoogle Scholar
  6. 6.
    Cui X, Dai Q, Tseng M, Shu XO, Gao YT, Zheng W (2007) Dietary Patterns and Breast Cancer Risk in the Shanghai Breast Cancer Study. Cancer Epidemiol Biomark Prev 16:1443–1448. doi: 10.1158/1055-9965.epi-07-0059 CrossRefGoogle Scholar
  7. 7.
    Link L, Canchola AJ, Bernstein L, Clarke CA, Stram DO, Ursin G, Horn-Ross PL (2013) Dietary Patterns and Breast Cancer Risk in the California Teachers Study Cohort. Am J Clin Nutr 98:1524–1532. doi: 10.3945/ajcn.113.061184 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Baglietto L, Krishnan K, Severi G, Hodge A, Brinkman M, English DR, McLean C, Hopper JL, Giles GG (2011) Dietary Patterns and Risk of Breast Cancer. Br J Cancer 104:524–531. doi: 10.1038/sj.bjc.6606044 CrossRefPubMedGoogle Scholar
  9. 9.
    Brennan S, Cantwell MM, Cardwell CR, Velentzis LS, Woodside JV (2010) Dietary Patterns and Breast Cancer Risk: A Systematic Review and Meta-analysis. Am J Clin Nutr 91:1294–1302. doi: 10.3945/ajcn.2009.28796 CrossRefPubMedGoogle Scholar
  10. 10.
    Prentice RL, Caan B, Chlebowski RT, Patterson R, Kuller LH, Ockene JK, Margolis KL, Limacher MC, Manson JE, Parker LM, Paskett E, Phillips L, Robbins J, Rossouw JE, Sarto GE, Shikany JM, Stefanick ML, Thomson CA, Van Horn L, Vitolins MZ, Wactawski-Wende J, Wallace RB, Wassertheil-Smoller S, Whitlock E, Yano K, Adams-Campbell L, Anderson GL, Assaf AR, Beresford SA, Black HR, Brunner RL, Brzyski RG, Ford L, Gass M, Hays J, Heber D, Heiss G, Hendrix SL, Hsia J, Hubbell FA, Jackson RD, Johnson KC, Kotchen JM, LaCroix AZ, Lane DS, Langer RD, Lasser NL, Henderson MM (2006) Low-fat dietary pattern and risk of invasive breast cancer. J Am Med Assoc 295:629–642. doi: 10.1001/jama.295.6.629 CrossRefGoogle Scholar
  11. 11.
    Murtaugh M, Sweeney C, Giuliano AR, Herrick JS, Hines L, Byers T, Baumgartner KB, Slattery ML (2008) Diet Patterns and Breast Cancer Risk in Hispanic and non-Hispanic White Women: The Four-Corners Breast Cancer Study. Am J Clin Nutr 87:978–984PubMedPubMedCentralGoogle Scholar
  12. 12.
    Männistö S, Dixon LB, Balder HF, Virtanen MJ, Krogh V, Khani BR, Berrino F, van den Brandt PA, Hartman AM, Pietinen P, Tan F, Wolk A, Goldbohm RA (2005) Dietary Patterns and Breast Cancer Risk: Results from three Cohort Studies in the DIETSCAN Project. Cancer Causes Control 16:725–733. doi: 10.1007/s10552-005-1763-7 CrossRefPubMedGoogle Scholar
  13. 13.
    Terry P, Suzuki R, Hu FB, Wolk A (2001) A Prospective Study of Major Dietary Patterns and the Risk of Breast Cancer. Cancer Epidemiol Biomark Prev 10:1281–1285Google Scholar
  14. 14.
    Adebamowo C, Hu FB, Cho E, Spiegelman D, Holmes MD, Willett WC (2005) Dietary Patterns and the Risk of Breast Cancer. Ann Epidemiol 15:789–795CrossRefPubMedGoogle Scholar
  15. 15.
    Barnard M, Boeke CE, Tamimi RM (2015) Established breast cancer risk factors and risk of intrinsic tumor subtypes. Biochimica et Biophysica Acta (BBA)—Rev Cancer 1856:73–85. doi: 10.1016/j.bbcan.2015.06.002 CrossRefGoogle Scholar
  16. 16.
    Fung T, Hu FB, McCullough ML, Newby PK, Willett WC, Holmes MD (2006) Diet Quality is Associated with the Risk of Estrogen Receptor-Negative Breast Cancer in Postmenopausal Women. J Nutr 136:466–472PubMedGoogle Scholar
  17. 17.
    Hirko KA, Willett WC, Hankinson SE, Rosner BA, Beck AH, Tamimi RM, Eliassen AH (2016) Healthy dietary patterns and risk of breast cancer by molecular subtype. Breast Cancer Res Treat 155:579–588. doi: 10.1007/s10549-016-3706-2 CrossRefPubMedGoogle Scholar
  18. 18.
    Touvier M, Fezeu L, Ahluwalia N, Julia C, Charnaux N, Sutton A, Méjean C, Latino-Martel P, Hercberg S, Galan P, Czernichow S (2013) Association Between Prediagnostic Biomarkers of Inflammation and Endothelial Function and Cancer Risk: A Nested Case-Control Study. Am J Epidemiol 177:3–13. doi: 10.1093/aje/kws359 CrossRefPubMedGoogle Scholar
  19. 19.
    Balkwill F (2004) Cancer and the Chemokine Network. Nat Rev Cancer 4:540–550. doi: 10.1038/nrc1388 CrossRefPubMedGoogle Scholar
  20. 20.
    Hong T, Liu A, Cai D, Zhang Y, Hua D, Hang X, Wu X (2013) Preoperative Serum C-Reactive Protein Levels and Early Breast Cancer by BMI and Menopausal Status. Cancer Invest 31:279–285. doi: 10.3109/07357907.2013.789898 CrossRefPubMedGoogle Scholar
  21. 21.
    Wang J, Lee IM, Tworoger SS, Buring JE, Ridker PM, Rosner B, Hankinson SE (2015) Plasma C-Reactive Protein and Risk of Breast Cancer in Two Prospective Studies and a Meta-analysis. Cancer Epidemiol Biomark Prev 24:1199–1206. doi: 10.1158/1055-9965.epi-15-0187 CrossRefGoogle Scholar
  22. 22.
    Guo Y, Pan L, Du CJ, Ren DQ, Xie XM (2013) Association Between C-Reactive Protein and Risk of Cancer: A Meta-analysis of Prospective Cohort Studies. Asian Pac J Cancer Prev 14:243–248CrossRefPubMedGoogle Scholar
  23. 23.
    Mulder M, Ranchor AV, Sanderman R, Bouma J, van den Heuvel WJ (1998) The stability of lifestyle behaviour. Int J Epidemiol 27:199–207. doi: 10.1093/ije/27.2.199 CrossRefPubMedGoogle Scholar
  24. 24.
    Shivappa N, Sandin S, Löf M, Hébert JR, Adami HO, Weiderpass E (2015) Prospective study of dietary inflammatory index and risk of breast cancer in Swedish women. Br J Cancer 113:1099–1103. doi: 10.1038/bjc.2015.304 CrossRefPubMedGoogle Scholar
  25. 25.
    Ge I, Rudolph A, Shivappa N, Flesch-Janys D, Hébert JR, Chang-Claude J (2015) Dietary inflammation potential and postmenopausal breast cancer risk in a German case-control study. The Breast 24:491–496. doi: 10.1016/j.breast.2015.04.012 CrossRefPubMedGoogle Scholar
  26. 26.
    Shivappa N, Steck SE, Hurley TG, Hussey JR, Hebert JR (2014) Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr 17:1689–1696. doi: 10.1017/S1368980013002115 CrossRefPubMedGoogle Scholar
  27. 27.
    Women’s Health Initiative Study Group (1998) Design of the Women’s Health Initiative Clinical Trial and Observational Study. Control Clin Trials 19:61–109. doi: 10.1016/S0197-2456(97)00078-0 CrossRefGoogle Scholar
  28. 28.
    Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T (1999) Measurement characteristics of the Women’s Health Initiative food frequency questionnaire. Ann Epidemiol 9:178–187. doi: 10.1016/S1047-2797(98)00055-6 CrossRefPubMedGoogle Scholar
  29. 29.
    Prentice RL, Mossavar-Rahmani Y, Huang Y, Van Horn L, Beresford SA, Caan B, Tinker L, Schoeller D, Bingham S, Eaton CB, Thomson C, Johnson KC, Ockene J, Sarto G, Heiss G, Neuhouser ML (2011) Evaluation and comparison of food records, recalls, and frequencies for energy and protein assessment by using recovery biomarkers. Am J Epidemiol 174:591–603. doi: 10.1093/aje/kwr140 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Neuhouser ML, Tinker L, Shaw PA, Schoeller D, Bingham SA, Horn LV, Beresford SA, Caan B, Thomson C, Satterfield S, Kuller L, Heiss G, Smit E, Sarto G, Ockene J, Stefanick ML, Assaf A, Runswick S, Prentice RL (2008) Use of recovery biomarkers to calibrate nutrient consumption self-reports in the Women’s Health Initiative. Am J Epidemiol 167:1247–1259. doi: 10.1093/aje/kwn026 CrossRefPubMedGoogle Scholar
  31. 31.
    Ritenbaugh C, Patterson RE, Chlebowski RT, Caan B, Fels-Tinker L, Howard B, Ockene J (2003) The women’s health initiative dietary modification trial: overview and baseline characteristics of participants. Ann Epidemiol 13:S87–S97. doi: 10.1016/S1047-2797(03)00044-9 CrossRefPubMedGoogle Scholar
  32. 32.
    Hebert JR, Patterson RE, Gorfine M, Ebbeling CB, St Jeor ST, Chlebowski RT (2003) Differences between estimated caloric requirements and self-reported caloric intake in the women’s health initiative. Ann Epidemiol 13:629–637. doi: 10.1016/S1047-2797(03)00051-6 CrossRefPubMedGoogle Scholar
  33. 33.
    Tinker LF, Rosal MC, Young AF, Perri MG, Patterson RE, Van Horn L, Assaf AR, Bowen DJ, Ockene J, Hays J, Wu L (2007) Predictors of dietary change and maintenance in the Women’s Health Initiative dietary modification trial. J Am Diet Assoc 107:1155–1165CrossRefPubMedGoogle Scholar
  34. 34.
    Nutrition Coordinating Center at the University of Minnesota M, MN (2013) Nutrition Data System for Research (NDSR). In:University of Minnesota, Minneapolis, MN Minneapolis, MNGoogle Scholar
  35. 35.
    Shivappa N, Steck SE, Hurley TG, Hussey JR, Ma Y, Ockene IS, Tabung FK, Hebert JR (2014) A population-based dietary inflammatory index predicts levels of C-reactive protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). Public Health Nutr 17:1825–1833. doi: 10.1017/S1368980013002565 CrossRefPubMedGoogle Scholar
  36. 36.
    Tabung FK, Steck SE, Zhang J, Ma Y, Liese AD, Agalliu I, Hou L, Hurley TG, Hingle M, Jiao L, Martin LW, Millen EA, Park HL, Rosal CM, Shikany JM, Shivappa N, Ockene JK, Hebert JR (2015) Construct validation of the dietary inflammatory index among postmenopausal women. Ann Epidemiol 25:398–405. doi: 10.1016/j.annepidem.2015.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Curb J, McTiernan A, Heckbert SR, Kooperberg C, Stanford J, Nevitt M, Johnson KC, Proulx-Burns L, Pastore L, Criqui M, Daugherty S, Morbidity WHI, Committee Mortality (2003) Outcomes ascertainment and adjudication methods in the Women’s Health Initiative. Ann Epidemiol 13:S122–S128. doi: 10.1016/S1047-2797(03)00048-6 CrossRefPubMedGoogle Scholar
  38. 38.
    Calhoun B, Collins LC (2015) Predictive markers in breast cancer: An update on ER and HER2 testing and reporting. Semin Diagn Pathol. doi: 10.1053/j.semdp.2015.02.011 PubMedGoogle Scholar
  39. 39.
    Parise C, Caggiano V (2014) Breast Cancer Survival Defined by the ER/PR/HER2 Subtypes and a Surrogate Classification according to Tumor Grade and Immunohistochemical Biomarkers. J Cancer Epidemiol 2014:11. doi: 10.1155/2014/469251 Google Scholar
  40. 40.
    Hu FB, Stampfer MJ, Rimm E, Ascherio A, Rosner BA, Spiegelman D, Willett WC (1999) Dietary fat and coronary heart disease: a comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. Am J Epidemiol 149:531–540CrossRefPubMedGoogle Scholar
  41. 41.
    Department of Health and Human Services (2008) 2008 physical activity guidelines for Americans. In:DHHS, Washington DCGoogle Scholar
  42. 42.
    Coghill A, Phipps AI, Bavry AA, Wactawski-Wende J, Lane DS, LaCroix A, Newcomb PA (2012) The association between NSAID use and colorectal cancer mortality: results from the Women’s Health Initiative. Cancer Epidemiol Biomark Prev 21:1966–1973. doi: 10.1158/1055-9965.epi-12-0672 CrossRefGoogle Scholar
  43. 43.
    Barlow WE, Prentice RL (1988) Residuals for relative risk regression. Biometrika 75:65–74. doi: 10.1093/biomet/75.1.65 CrossRefGoogle Scholar
  44. 44.
    Fung T, Hu FB, Holmes MD, Rosner BA, Hunter DJ, Colditz GA, Willett WC (2005) Dietary Patterns and the Risk of Postmenopausal Breast Cancer. Int J Cancer 116:116–121. doi: 10.1002/ijc.20999 CrossRefPubMedGoogle Scholar
  45. 45.
    Cottet V, Touvier M, Fournier A, Touillaud MS, Lafay L, Clavel-Chapelon F, Boutron-Ruault MC (2009) Postmenopausal Breast Cancer Risk and Dietary Patterns in the E3N-EPIC Prospective Cohort Study. Am J Epidemiol 170:1257–1267. doi: 10.1093/aje/kwp257 CrossRefPubMedGoogle Scholar
  46. 46.
    Gaudet M, Britton JA, Kabat GC, Steck-Scott S, Eng SM, Teitelbaum SL, Terry MB, Neugut AI, Gammon MD (2004) Fruits, Vegetables, and Micronutrients in Relation to Breast Cancer Modified by Menopause and Hormone Receptor Status. Cancer Epidemiol Biomark Prev 13:1485–1494Google Scholar
  47. 47.
    Jung S, Spiegelman D, Baglietto L, Bernstein LBD, van den Brandt PA, Buring JE, Cerhan JR, Gaudet MM, Giles GG, Goodman G, Hakansson N, Hankinson SE, Helzlsouer K, Horn-Ross PL, Inoue M, Krogh V, Lof M, McCullough ML, Miller AB, Neuhouser ML, Palmer JR, Park Y, Robien K, Rohan TE, Scarmo S, Schairer C, Schouten LJ, Shikany JM, Sieri S, Tsugane S, Visvanathan K, Weiderpass E, Willett WC, Wolk A, Zeleniuch-Jacquotte A, Zhang SM, Zhang X, Ziegler RG, Smith-Warner SA (2013) Fruit and Vegetable Intake and Risk of Breast Cancer by Hormone Receptor Status. JNCI J Natl Cancer Inst 105:219–236. doi: 10.1093/jnci/djs635 CrossRefPubMedGoogle Scholar
  48. 48.
    Sant M, Allemani C, Sieri S, Krogh V, Menard S, Tagliabue E, Nardini E, Micheli A, Crosignani P, Muti P, Berrino F (2007) Salad Vegetables Dietary Pattern Protects against HER-2-positive Breast Cancer: A Prospective Italian Study. Int J Cancer 121:911–914. doi: 10.1002/ijc.22714 CrossRefPubMedGoogle Scholar
  49. 49.
    Liu X, Rose DP (1996) Differential Expression and Regulation of Cyclooxygenase-1 and -2 in Two Human Breast Cancer Cell Lines. Cancer Res 56:5125–5127PubMedGoogle Scholar
  50. 50.
    Lanza-Jacoby S, Miller S, Flynn J, Gallatig K, Daskalakis C, Masferrer JL, Zweifel BS, Sembhi H, Russo IH (2003) The Cyclooxygenase-2 Inhibitor, Celecoxib, Prevents the Development of Mammary Tumors in HER-2/neu Mice. Cancer Epidemiol Biomark Prev 12:1486–1491Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Fred K. Tabung
    • 1
    • 2
    • 3
  • Susan E. Steck
    • 2
    • 3
    • 4
  • Angela D. Liese
    • 3
    • 4
  • Jiajia Zhang
    • 3
  • Yunsheng Ma
    • 5
  • Karen C. Johnson
    • 6
  • Dorothy S. Lane
    • 7
  • Lihong Qi
    • 8
  • Linda Snetselaar
    • 9
  • Mara Z. Vitolins
    • 10
  • Judith K. Ockene
    • 5
  • James R. Hebert
    • 2
    • 3
  1. 1.Departments of Nutrition and EpidemiologyHarvard T. H. Chan School of Public HealthBostonUSA
  2. 2.Cancer Prevention and Control ProgramUniversity of South CarolinaColumbiaUSA
  3. 3.Department of Epidemiology and BiostatisticsArnold School of Public Health, University of South CarolinaColumbiaUSA
  4. 4.Center for Research in Nutrition and Health DisparitiesUniversity of South CarolinaColumbiaUSA
  5. 5.Division of Preventive and Behavioral MedicineUniversity of Massachusetts Medical SchoolWorcesterUSA
  6. 6.Department of Preventive MedicineUniversity of Tennessee Health Science CenterMemphisUSA
  7. 7.Department of Family, Population and Preventive MedicineStony Brook University School of MedicineNew YorkUSA
  8. 8.Division of Biostatistics, Department of Public Health SciencesUniversity of CaliforniaDavisUSA
  9. 9.Department of EpidemiologyThe University of IowaIowa CityUSA
  10. 10.Department of Epidemiology and PreventionWake Forest School of MedicineWinston-SalemUSA

Personalised recommendations