Advertisement

Breast Cancer Research and Treatment

, Volume 158, Issue 2, pp 263–276 | Cite as

GGNBP2 acts as a tumor suppressor by inhibiting estrogen receptor α activity in breast cancer cells

  • Zi-Jian Lan
  • YunHui Hu
  • Sheng Zhang
  • Xian Li
  • Huaxin Zhou
  • Jixiang Ding
  • Carolyn M. Klinge
  • Brandie N. Radde
  • Austin J. Cooney
  • Jin Zhang
  • Zhenmin Lei
Preclinical study

Abstract

Gametogenetin-binding protein 2 (GGNBP2) is encoded in human chromosome 17q12-q23, a region known as a breast and ovarian cancer susceptibility locus. GGNBP2, also referred to ZFP403, has a single C2H2 zinc finger and a consensus LxxLL nuclear receptor-binding motif. Here, we demonstrate that GGNBP2 expression is reduced in primary human breast tumors and in breast cancer cell lines, including T47D, MCF-7, LCC9, LY2, and MDA-MB-231 compared with normal, immortalized estrogen receptor α (ERα) negative MCF-10A and MCF10F breast epithelial cells. Overexpression of GGNBP2 inhibits the proliferation of T47D and MCF-7 ERα positive breast cancer cells without affecting MCF-10A and MCF10F. Stable GGNBP2 overexpression in T47D cells inhibits 17β-estradiol (E2)-stimulated proliferation as well as migration, invasion, anchorage-independent growth in vitro, and xenograft tumor growth in mice. We further demonstrate that GGNBP2 protein physically interacts with ERα, inhibits E2-induced activation of estrogen response element-driven reporter activity, and attenuates ER target gene expression in T47D cells. In summary, our in vitro and in vivo findings suggest that GGNBP2 is a novel breast cancer tumor suppressor functioning as a nuclear receptor corepressor to inhibit ERα activity and tumorigenesis.

Keywords

GGNBP2 Breast cancer ERα Tumorigenesis Tumor suppressor 

Notes

Acknowledgments

We thank Drs. Ray Wu, John Lydon, and Bert W. O’Malley for kindly providing human estrogen receptor expression vectors, ERE-luciferase plasmids, mammary RNA from normal and Wnt1 transgenic mice. We also thank Dr. Robert Clarke for graciously providing LCC9 and LY2 cells.

Funding

This work was supported in part by Grants R01-HD057501 (ZM Lei), 5P20RR017702-10, and 8P20 GM103453-10, project I (ZJ Lan) from the National Institutes of Health, USA, University of Louisville School of Medicine (CM Klinge), and 12ZCDZSY15700 (J Zhang) from Tianjin municipal Major Scientific and Technological Special Project for Significant Anticancer Development and Chinese National Natural Sciences Foundation 81402480 (YH Hu), China.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Narod SA, Feunteun J, Lynch HT, Watson P, Conway T, Lynch J, Lenoir GM (1991) Familial breast-ovarian cancer locus on chromosome 17q12-q23. Lancet 338(8759):82–83CrossRefPubMedGoogle Scholar
  2. 2.
    Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y (1991) Accumulation of genetic alterations and progression of primary breast cancer. Cancer Res 51(21):5794–5799PubMedGoogle Scholar
  3. 3.
    Phelan CM, Borg A, Cuny M, Crichton DN, Baldersson T, Andersen TI, Caligo MA, Lidereau R, Lindblom A, Seitz S, Kelsell D, Hamann U, Rio P, Thorlacius S, Papp J, Olah E, Ponder B, Bignon YJ, Scherneck S, Barkardottir R, Borresen-Dale AL, Eyfjord J, Theillet C, Thompson AM, Larsson C et al (1998) Consortium study on 1280 breast carcinomas: allelic loss on chromosome 17 targets subregions associated with family history and clinical parameters. Cancer Res 58(5):1004–1012PubMedGoogle Scholar
  4. 4.
    Couch FJ, Wang X, McGuffog L, Lee A, Olswold C, Kuchenbaecker KB, Soucy P, Fredericksen Z, Barrowdale D, Dennis J, Gaudet MM, Dicks E, Kosel M, Healey S, Sinilnikova OM, Lee A, Bacot F, Vincent D, Hogervorst FB, Peock S, Stoppa-Lyonnet D, Jakubowska A, kConFab I, Radice P, Schmutzler RK, Swe B, Domchek SM, Piedmonte M, Singer CF, Friedman E, Thomassen M, Ontario Cancer Genetics N, Hansen TV, Neuhausen SL, Szabo CI, Blanco I, Greene MH, Karlan BY, Garber J, Phelan CM, Weitzel JN, Montagna M, Olah E, Andrulis IL, Godwin AK, Yannoukakos D, Goldgar DE, Caldes T, Nevanlinna H, Osorio A, Terry MB, Daly MB, van Rensburg EJ, Hamann U, Ramus SJ, Toland AE, Caligo MA, Olopade OI, Tung N, Claes K, Beattie MS, Southey MC, Imyanitov EN, Tischkowitz M, Janavicius R, John EM, Kwong A, Diez O, Balmana J, Barkardottir RB, Arun BK, Rennert G, Teo SH, Ganz PA, Campbell I, van der Hout AH, van Deurzen CH, Seynaeve C, Gomez Garcia EB, van Leeuwen FE, Meijers-Heijboer HE, Gille JJ, Ausems MG, Blok MJ, Ligtenberg MJ, Rookus MA, Devilee P, Verhoef S, van Os TA, Wijnen JT, Embrace Hebon, Frost D, Ellis S, Fineberg E, Platte R, Evans DG, Izatt L, Eeles RA, Adlard J, Eccles DM, Cook J, Brewer C, Douglas F, Hodgson S, Morrison PJ, Side LE, Donaldson A, Houghton C, Rogers MT, Dorkins H, Eason J, Gregory H, McCann E, Murray A, Calender A, Hardouin A, Berthet P, Delnatte C, Nogues C, Lasset C, Houdayer C, Leroux D, Rouleau E, Prieur F, Damiola F, Sobol H, Coupier I, Venat-Bouvet L, Castera L, Gauthier-Villars M, Leone M, Pujol P, Mazoyer S, Bignon YJ, Collaborators GS, Zlowocka-Perlowska E, Gronwald J, Lubinski J, Durda K, Jaworska K, Huzarski T, Spurdle AB, Viel A, Peissel B, Bonanni B, Melloni G, Ottini L, Papi L, Varesco L, Tibiletti MG, Peterlongo P, Volorio S, Manoukian S, Pensotti V, Arnold N, Engel C, Deissler H, Gadzicki D, Gehrig A, Kast K, Rhiem K, Meindl A, Niederacher D, Ditsch N, Plendl H, Preisler-Adams S, Engert S, Sutter C, Varon-Mateeva R, Wappenschmidt B, Weber BH, Arver B, Stenmark-Askmalm M, Loman N, Rosenquist R, Einbeigi Z, Nathanson KL, Rebbeck TR, Blank SV, Cohn DE, Rodriguez GC, Small L, Friedlander M, Bae-Jump VL, Fink-Retter A, Rappaport C, Gschwantler-Kaulich D, Pfeiler G, Tea MK, Lindor NM, Kaufman B, Shimon Paluch S, Laitman Y, Skytte AB, Gerdes AM, Pedersen IS, Moeller ST, Kruse TA, Jensen UB, Vijai J, Sarrel K, Robson M, Kauff N, Mulligan AM, Glendon G, Ozcelik H, Ejlertsen B, Nielsen FC, Jonson L, Andersen MK, Ding YC, Steele L, Foretova L, Teule A, Lazaro C, Brunet J, Pujana MA, Mai PL, Loud JT, Walsh C, Lester J, Orsulic S, Narod SA, Herzog J, Sand SR, Tognazzo S, Agata S, Vaszko T, Weaver J, Stavropoulou AV, Buys SS, Romero A, de la Hoya M, Aittomaki K, Muranen TA, Duran M, Chung WK, Lasa A, Dorfling CM, Miron A, BCFR, Benitez J, Senter L, Huo D, Chan SB, Sokolenko AP, Chiquette J, Tihomirova L, Friebel TM, Agnarsson BA, Lu KH, Lejbkowicz F, James PA, Hall P, Dunning AM, Tessier D, Cunningham J, Slager SL, Wang C, Hart S, Stevens K, Simard J, Pastinen T, Pankratz VS, Offit K, Easton DF, Chenevix-Trench G, Antoniou AC, CIMBA (2013) Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk. PLoS Genet 9(3):e1003212. doi: 10.1371/journal.pgen.1003212 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Levy-Lahad E, Friedman E (2007) Cancer risks among BRCA1 and BRCA2 mutation carriers. Br J Cancer 96(1):11–15CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chapman DD (2007) Cancer genetics. Semin Oncol Nurs 23(1):2–9CrossRefPubMedGoogle Scholar
  7. 7.
    Cybulski C, Carrot-Zhang J, Kluzniak W, Rivera B, Kashyap A, Wokolorczyk D, Giroux S, Nadaf J, Hamel N, Zhang S, Huzarski T, Gronwald J, Byrski T, Szwiec M, Jakubowska A, Rudnicka H, Lener M, Masojc B, Tonin PN, Rousseau F, Gorski B, Debniak T, Majewski J, Lubinski J, Foulkes WD, Narod SA, Akbari MR (2015) Germline RECQL mutations are associated with breast cancer susceptibility. Nat Genet 47(6):643–646. doi: 10.1038/ng.3284 CrossRefPubMedGoogle Scholar
  8. 8.
    Li Y, Chen Z (2004) Molecular cloning and characterization of LCRG1 a novel gene localized to the tumor suppressor locus D17S800-D17S930. Cancer Lett 209(1):75–85CrossRefPubMedGoogle Scholar
  9. 9.
    Ohbayashi T, Oikawa K, Iwata R, Kameta A, Evine K, Isobe T, Matsuda Y, Mimura J, Fujii-Kuriyama Y, Kuroda M, Mukai K (2001) Dioxin induces a novel nuclear factor, DIF-3, that is implicated in spermatogenesis. FEBS Lett 508(3):341–344CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang J, Wang Y, Zhou Y, Cao Z, Huang P, Lu B (2005) Yeast two-hybrid screens imply that GGNBP1, GGNBP2 and OAZ3 are potential interaction partners of testicular germ cell-specific protein GGN1. FEBS Lett 579(2):559–566CrossRefPubMedGoogle Scholar
  11. 11.
    Perissi V, Staszewski LM, McInerney EM, Kurokawa R, Krones A, Rose DW, Lambert MH, Milburn MV, Glass CK, Rosenfeld MG (1999) Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev 13(24):3198–3208CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hu X, Lazar MA (1999) The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402(6757):93–96CrossRefPubMedGoogle Scholar
  13. 13.
    Kuang SQ, Liao L, Zhang H, Lee AV, O’Malley BW, Xu J (2004) AIB1/SRC-3 deficiency affects insulin-like growth factor I signaling pathway and suppresses v-Ha-ras-induced breast cancer initiation and progression in mice. Cancer Res 64(5):1875–1885CrossRefPubMedGoogle Scholar
  14. 14.
    Ma Y, Katiyar P, Jones LP, Fan S, Zhang Y, Furth PA, Rosen EM (2006) The breast cancer susceptibility gene BRCA1 regulates progesterone receptor signaling in mammary epithelial cells. Mol Endocrinol 20(1):14–34CrossRefPubMedGoogle Scholar
  15. 15.
    Gizard F, Robillard R, Gross B, Barbier O, Revillion F, Peyrat JP, Torpier G, Hum DW, Staels B (2006) TReP-132 is a novel progesterone receptor coactivator required for the inhibition of breast cancer cell growth and enhancement of differentiation by progesterone. Mol Cell Biol 26(20):7632–7644CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li YJ, Xie HL, Chen ZC, He CM (2001) Cloning and expression analysis of a laryngeal carcinoma related gene, LCRG1. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 33(3):315–319Google Scholar
  17. 17.
    Guan R, Wen XY, Wu J, Duan R, Cao H, Lam S, Hou D, Wang Y, Hu J, Chen Z (2012) Knockdown of ZNF403 inhibits cell proliferation and induces G2/M arrest by modulating cell-cycle mediators. Mol Cell Biochem 365(1–2):211–222. doi: 10.1007/s11010-012-1262-6 CrossRefPubMedGoogle Scholar
  18. 18.
    Yin F, Liu L, Liu X, Li G, Zheng L, Li D, Wang Q, Zhang W, Li L (2014) Downregulation of tumor suppressor gene ribonuclease T2 and gametogenetin binding protein 2 is associated with drug resistance in ovarian cancer. Oncol Rep 32(1):362–372. doi: 10.3892/or.2014.3175 PubMedGoogle Scholar
  19. 19.
    Bronzert DA, Greene GL, Lippman ME (1985) Selection and characterization of a breast cancer cell line resistant to the antiestrogen LY 117018. Endocrinology 117(4):1409–1417. doi: 10.1210/endo-117-4-1409 CrossRefPubMedGoogle Scholar
  20. 20.
    Pei XH, Bai F, Smith MD, Usary J, Fan C, Pai SY, Ho IC, Perou CM, Xiong Y (2009) CDK inhibitor p18(INK4c) is a downstream target of GATA3 and restrains mammary luminal progenitor cell proliferation and tumorigenesis. Cancer Cell 15(5):389–401CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hongo A, Kuramoto H, Nakamura Y, Hasegawa K, Nakamura K, Kodama J, Hiramatsu Y (2003) Antitumor effects of a soluble insulin-like growth factor I receptor in human ovarian cancer cells: advantage of recombinant protein administration in vivo. Cancer Res 63(22):7834–7839PubMedGoogle Scholar
  22. 22.
    Paliwal S, Kovi RC, Nath B, Chen YW, Lewis BC, Grossman SR (2007) The alternative reading frame tumor suppressor antagonizes hypoxia-induced cancer cell migration via interaction with the COOH-terminal binding protein corepressor. Cancer Res 67(19):9322–9329CrossRefPubMedGoogle Scholar
  23. 23.
    Hu Y, Xu K, Yague E (2015) Mir-218 targets survivin and regulates resistance to chemotherapeutics in breast cancer. Breast Cancer Res Treat 151(2):269–280. doi: 10.1007/s10549-015-3372-9 CrossRefPubMedGoogle Scholar
  24. 24.
    Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE (1988) Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55(4):619–625CrossRefPubMedGoogle Scholar
  25. 25.
    Holliday DL, Speirs V (2011) Choosing the right cell line for breast cancer research. Breast Cancer Res 13(4):215. doi: 10.1186/bcr2889 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Singhal H, Guo L, Bradlow HL, Mittelman A, Tiwari RK (1999) Endocrine characteristics of human breast epithelial cells, MCF-10F. Horm Res 52(4):171–177. doi: 10.1159/000023457 CrossRefPubMedGoogle Scholar
  27. 27.
    Subik K, Lee JF, Baxter L, Strzepek T, Costello D, Crowley P, Xing L, Hung MC, Bonfiglio T, Hicks DG, Tang P (2010) The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer (Auckl) 4:35–41PubMedCentralGoogle Scholar
  28. 28.
    Chen Y, Chen C, Yang B, Xu Q, Wu F, Liu F, Ye X, Meng X, Mougin B, Liu G, Shen Z, Shao Z, Wu J (2011) Estrogen receptor-related genes as an important panel of predictors for breast cancer response to neoadjuvant chemotherapy. Cancer Lett 302(1):63–68. doi: 10.1016/j.canlet.2010.12.014 CrossRefPubMedGoogle Scholar
  29. 29.
    Yamamoto-Ibusuki M, Arnedos M, Andre F (2015) Targeted therapies for ER+/HER2− metastatic breast cancer. BMC Med 13:137. doi: 10.1186/s12916-015-0369-5 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ciarloni L, Mallepell S, Brisken C (2007) Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development. Proc Natl Acad Sci USA 104(13):5455–5460CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang X, Xiao Z, Chen Z, Li C, Li J, Yanhui Y, Yang F, Yang Y, Oyang Y (2006) Comparative proteomics analysis of the proteins associated with laryngeal carcinoma-related gene 1. Laryngoscope 116(2):224–230CrossRefPubMedGoogle Scholar
  32. 32.
    Duan CJ, Jiang TB, Li C (2008) Screening the effective target sequences of laryngeal carcinoma related gene LCRG1. Zhong Nan Da Xue Xue Bao Yi Xue Ban 33(6):468–475PubMedGoogle Scholar
  33. 33.
    Medina D (2005) Mammary developmental fate and breast cancer risk. Endocr Relat Cancer 12(3):483–495CrossRefPubMedGoogle Scholar
  34. 34.
    Katzenellenbogen BS, Katzenellenbogen JA (2000) Estrogen receptor transcription and transactivation: estrogen receptor alpha and estrogen receptor beta: regulation by selective estrogen receptor modulators and importance in breast cancer. Breast Cancer Res 2(5):335–344CrossRefPubMedGoogle Scholar
  35. 35.
    Deroo BJ, Korach KS (2006) Estrogen receptors and human disease. J Clin Invest 116(3):561–570CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Weihua Z, Andersson S, Cheng G, Simpson ER, Warner M, Gustafsson JA (2003) Update on estrogen signaling. FEBS Lett 546(1):17–24CrossRefPubMedGoogle Scholar
  37. 37.
    Smith CL, O’Malley BW (2004) Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 25(1):45–71CrossRefPubMedGoogle Scholar
  38. 38.
    McKenna NJ, Evans RM, O’Malley BW (2014) Nuclear receptor signaling: a home for nuclear receptor and coregulator signaling research. Nucl Recept Signal 12:e006. doi: 10.1621/nrs.12006 PubMedPubMedCentralGoogle Scholar
  39. 39.
    Wysokinski D, Blasiak J, Pawlowska E (2015) Role of RUNX2 in breast carcinogenesis. Int J Mol Sci 16(9):20969–20993. doi: 10.3390/ijms160920969 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387(6634):733–736. doi: 10.1038/42750 CrossRefPubMedGoogle Scholar
  41. 41.
    Plevin MJ, Mills MM, Ikura M (2005) The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. Trends Biochem Sci 30(2):66–69. doi: 10.1016/j.tibs.2004.12.001 CrossRefPubMedGoogle Scholar
  42. 42.
    Sflomos G, Dormoy V, Metsalu T, Jeitziner R, Battista L, Scabia V, Raffoul W, Delaloye JF, Treboux A, Fiche M, Vilo J, Ayyanan A, Brisken C (2016) A preclinical model for eralpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell 29(3):407–422. doi: 10.1016/j.ccell.2016.02.002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zi-Jian Lan
    • 1
  • YunHui Hu
    • 2
  • Sheng Zhang
    • 2
  • Xian Li
    • 3
  • Huaxin Zhou
    • 4
  • Jixiang Ding
    • 4
  • Carolyn M. Klinge
    • 5
  • Brandie N. Radde
    • 5
  • Austin J. Cooney
    • 6
  • Jin Zhang
    • 2
  • Zhenmin Lei
    • 3
  1. 1.Division of Life Sciences, Center for Nutrigenomics & Applied Animal NutritionAlltech Inc.NicholasvilleUSA
  2. 2.The 3rd Department of Breast Cancer, National Clinical Research Center of CancerTianjin Medical University Cancer Institute & HospitalTianjinPeople’s Republic of China
  3. 3.Department of OB/GYN & Women’s HealthUniversity of Louisville Health Sciences CenterLouisvilleUSA
  4. 4.Birth Defects Center, Department of Molecular, Cellular and Craniofacial BiologyUniversity of Louisville Health Sciences CenterLouisvilleUSA
  5. 5.Department of Biochemistry & Molecular GeneticsUniversity of Louisville Health Sciences CenterLouisvilleUSA
  6. 6.Department of PediatricsThe University of Texas at Austin Dell Medical SchoolAustinUSA

Personalised recommendations