Skip to main content

Advertisement

Log in

Plasma fluorescent oxidation products and risk of estrogen receptor-negative breast cancer in the Nurses’ Health Study and Nurses’ Health Study II

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Findings from epidemiologic studies of oxidative stress biomarkers and breast cancer have been mixed, although no studies have focused on estrogen receptor-negative (ER−) tumors which may be more strongly associated with oxidative stress. We examined prediagnostic plasma fluorescent oxidation products (FlOP), a global biomarker of oxidative stress, and risk of ER− breast cancer in a nested case-control study in the Nurses’ Health Study and Nurses’ Health Study II. ER− breast cancer cases (n = 355) were matched to 355 controls on age, month/time of day of blood collection, fasting status, menopausal status, and menopausal hormone use. Conditional logistic regression models were used to examine associations of plasma FlOP at three emission wavelengths (FlOP_360, FlOP_320, and FlOP_400) and risk of ER− breast cancer. We did not observe any significant associations between FlOP measures and risk of ER− breast cancer overall; the RRQ4vsQ1 (95 %CI) 0.70 (0.43–1.13), p trend = 0.09 for FlOP_360; 0.91(0.56-1.46), p trend = 0.93 for FlOP_320; and 0.62 (0.37-1.03), p trend = 0.10 for FlOP_400. Results were similar in models additionally adjusted for total carotenoid levels and in models stratified by age and total carotenoids. Although high (vs. low) levels of FIOP_360 and FIOP_400 were associated with lower risk of ER− breast cancer in lean women (body mass index (BMI) < 25 kg/m2) but not in overweight/obese women, these differences were not statistically significant (pint = 0.23 for FlOP_360; pint = 0.37 for FlOP_400). Our findings suggest that positive associations of plasma FlOP concentrations and ER− breast cancer risk are unlikely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dreher D, Junod AF (1996) Role of oxygen free radicals in cancer development. Eur J Cancer 32A(1):30–38

    Article  CAS  PubMed  Google Scholar 

  2. Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401(1):1–11. doi:10.1042/bj20061131

    Article  CAS  PubMed  Google Scholar 

  3. Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267. doi:10.1146/annurev.pharmtox.44.101802.121851

    Article  CAS  PubMed  Google Scholar 

  4. Sener DE, Gonenc A, Akinci M, Torun M (2007) Lipid peroxidation and total antioxidant status in patients with breast cancer. Cell Biochem Funct 25(4):377–382. doi:10.1002/cbf.1308

    Article  CAS  PubMed  Google Scholar 

  5. Khanzode SS, Muddeshwar MG, Khanzode SD, Dakhale GN (2004) Antioxidant enzymes and lipid peroxidation in different stages of breast cancer. Free Radic Res 38(1):81–85

    Article  CAS  PubMed  Google Scholar 

  6. Huang YL, Sheu JY, Lin TH (1999) Association between oxidative stress and changes of trace elements in patients with breast cancer. Clin Biochem 32(2):131–136

    Article  CAS  PubMed  Google Scholar 

  7. Gonenc A, Ozkan Y, Torun M, Simsek B (2001) Plasma malondialdehyde (MDA) levels in breast and lung cancer patients. J Clin Pharm Ther 26(2):141–144

    Article  CAS  PubMed  Google Scholar 

  8. Akbulut H, Akbulut KG, Icli F, Buyukcelik A (2003) Daily variations of plasma malondialdehyde levels in patients with early breast cancer. Cancer Detect Prev 27(2):122–126

    Article  CAS  PubMed  Google Scholar 

  9. Polat MF, Taysi S, Gul M, Cikman O, Yilmaz I, Bakan E, Erdogan F (2002) Oxidant/antioxidant status in blood of patients with malignant breast tumour and benign breast disease. Cell Biochem Funct 20(4):327–331. doi:10.1002/cbf.980

    Article  CAS  PubMed  Google Scholar 

  10. Ray G, Batra S, Shukla NK, Deo S, Raina V, Ashok S, Husain SA (2000) Lipid peroxidation, free radical production and antioxidant status in breast cancer. Breast Cancer Res Treat 59(2):163–170

    Article  CAS  PubMed  Google Scholar 

  11. Rossner P Jr, Gammon MD, Terry MB, Agrawal M, Zhang FF, Teitelbaum SL, Eng SM, Gaudet MM, Neugut AI, Santella RM (2006) Relationship between urinary 15-F2t-isoprostane and 8-oxodeoxyguanosine levels and breast cancer risk. Cancer Epidemiol Biomarkers Prev 15(4):639–644. doi:10.1158/1055-9965.epi-05-0554

    Article  CAS  PubMed  Google Scholar 

  12. Tas F, Hansel H, Belce A, Ilvan S, Argon A, Camlica H, Topuz E (2005) Oxidative stress in breast cancer. Med Oncol 22(1):11–15. doi:10.1385/mo:22:1:011

    Article  CAS  PubMed  Google Scholar 

  13. Dai Q, Gao YT, Shu XO, Yang G, Milne G, Cai Q, Wen W, Rothman N, Cai H, Li H, Xiang Y, Chow WH, Zheng W (2009) Oxidative stress, obesity, and breast cancer risk: results from the Shanghai Women’s Health Study. J Clin Oncol 27(15):2482–2488. doi:10.1200/jco.2008.19.7970

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee KH, Shu XO, Gao YT, Ji BT, Yang G, Blair A, Rothman N, Zheng W, Chow WH, Kang D (2010) Breast cancer and urinary biomarkers of polycyclic aromatic hydrocarbon and oxidative stress in the Shanghai Women’s Health Study. Cancer Epidemiol Biomarkers Prev 19(3):877–883. doi:10.1158/1055-9965.epi-09-1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu T, Willett WC, Rifai N, Rimm EB (2007) Plasma fluorescent oxidation products as potential markers of oxidative stress for epidemiologic studies. Am J Epidemiol 166(5):552–560. doi:10.1093/aje/kwm119

    Article  PubMed  Google Scholar 

  16. Fortner RT, Tworoger SS, Wu T, Eliassen AH (2013) Plasma florescent oxidation products and breast cancer risk: repeated measures in the Nurses’ Health Study. Breast Cancer Res Treat 141(2):307–316. doi:10.1007/s10549-013-2673-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sisti JS, Lindstrom S, Kraft P, Tamimi RM, Rosner BA, Wu T, Willett WC, Eliassen AH (2015) Premenopausal plasma carotenoids, fluorescent oxidation products, and subsequent breast cancer risk in the nurses’ health studies. Breast Cancer Res Treat 151(2):415–425. doi:10.1007/s10549-015-3391-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frei B (1994) Reactive oxygen species and antioxidant vitamins: mechanisms of action. Am J Med 97(3A):5S–13S discussion 22S-28S

    Article  CAS  PubMed  Google Scholar 

  19. Eliassen AH, Hendrickson SJ, Brinton LA, Buring JE, Campos H, Dai Q, Dorgan JF, Franke AA, Gao YT, Goodman MT, Hallmans G, Helzlsouer KJ, Hoffman-Bolton J, Hulten K, Sesso HD, Sowell AL, Tamimi RM, Toniolo P, Wilkens LR, Winkvist A, Zeleniuch-Jacquotte A, Zheng W, Hankinson SE (2012) Circulating carotenoids and risk of breast cancer: pooled analysis of eight prospective studies. J Natl Cancer Inst 104(24):1905–1916. doi:10.1093/jnci/djs461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang X, Spiegelman D, Baglietto L, Bernstein L, Boggs DA, van den Brandt PA, Buring JE, Gapstur SM, Giles GG, Giovannucci E, Goodman G, Hankinson SE, Helzlsouer KJ, Horn-Ross PL, Inoue M, Jung S, Khudyakov P, Larsson SC, Lof M, McCullough ML, Miller AB, Neuhouser ML, Palmer JR, Park Y, Robien K, Rohan TE, Ross JA, Schouten LJ, Shikany JM, Tsugane S, Visvanathan K, Weiderpass E, Wolk A, Willett WC, Zhang SM, Ziegler RG, Smith-Warner SA (2012) Carotenoid intakes and risk of breast cancer defined by estrogen receptor and progesterone receptor status: a pooled analysis of 18 prospective cohort studies. Am J Clin Nutr 95(3):713–725. doi:10.3945/ajcn.111.014415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang X, Tworoger SS, Eliassen AH, Hankinson SE (2013) Postmenopausal plasma sex hormone levels and breast cancer risk over 20 years of follow-up. Breast Cancer Res Treat 137(3):883–892. doi:10.1007/s10549-012-2391-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hankinson SE, Willett WC, Manson JE, Colditz GA, Hunter DJ, Spiegelman D, Barbieri RL, Speizer FE (1998) Plasma sex steroid hormone levels and risk of breast cancer in postmenopausal women. J Natl Cancer Inst 90(17):1292–1299

    Article  CAS  PubMed  Google Scholar 

  23. Tworoger SS, Sluss P, Hankinson SE (2006) Association between plasma prolactin concentrations and risk of breast cancer among predominately premenopausal women. Cancer Res 66(4):2476–2482. doi:10.1158/0008-5472.can-05-3369

    Article  CAS  PubMed  Google Scholar 

  24. Wu T, Rifai N, Roberts LJ 2nd, Willett WC, Rimm EB (2004) Stability of measurements of biomarkers of oxidative stress in blood over 36 hours. Cancer Epidemiol Biomarkers Prev 13(8):1399–1402

    CAS  PubMed  Google Scholar 

  25. Frankel EN (1987) Secondary products of lipid oxidation. Chem Phys Lipids 44(2–4):73–85

    Article  CAS  PubMed  Google Scholar 

  26. Fujimoto K, Neff WE, Frankel EN (1984) The reaction of DNA with lipid oxidation products, metals and reducing agents. Biochim Biophys Acta 795(1):100–107

    Article  CAS  PubMed  Google Scholar 

  27. Flynn TP, Allen DW, Johnson GJ, White JG (1983) Oxidant damage of the lipids and proteins of the erythrocyte membranes in unstable hemoglobin disease. Evidence for the role of lipid peroxidation. J Clin Invest 71(5):1215–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jensen MK, Wang Y, Rimm EB, Townsend MK, Willett W, Wu T (2013) Fluorescent oxidation products and risk of coronary heart disease: a prospective study in women. J Am Heart Assoc 2(5):e000195. doi:10.1161/jaha.113.000195

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wu T, Rifai N, Willett WC, Rimm EB (2007) Plasma fluorescent oxidation products: independent predictors of coronary heart disease in men. Am J Epidemiol 166(5):544–551. doi:10.1093/aje/kwm120

    Article  PubMed  Google Scholar 

  30. El-Sohemy A, Baylin A, Kabagambe E, Ascherio A, Spiegelman D, Campos H (2002) Individual carotenoid concentrations in adipose tissue and plasma as biomarkers of dietary intake. Am J Clin Nutr 76(1):172–179

    CAS  PubMed  Google Scholar 

  31. Rosner B, Cook N, Portman R, Daniels S, Falkner B (2008) Determination of blood pressure percentiles in normal-weight children: some methodological issues. Am J Epidemiol 167(6):653–666. doi:10.1093/aje/kwm348

    Article  CAS  PubMed  Google Scholar 

  32. Hirko KA, Spiegelman D, Willett WC, Hankinson SE, Eliassen AH (2014) Alcohol consumption in relation to plasma sex hormones, prolactin, and sex hormone-binding globulin in premenopausal women. Cancer Epidemiol Biomarkers Prev 23(12):2943–2953. doi:10.1158/1055-9965.epi-14-0982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rosner B (1983) Percentage points for a generalized ESD many-outlier procedure. Technometrics 25:165–172

    Article  Google Scholar 

  34. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266(1–2):37–56

    Article  CAS  PubMed  Google Scholar 

  35. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. doi:10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  36. Yager JD (2000) Endogenous estrogens as carcinogens through metabolic activation. J Natl Cancer Inst Monogr 27:67–73

    Article  CAS  PubMed  Google Scholar 

  37. Brooks PJ (1997) DNA damage, DNA repair, and alcohol toxicity–a review. Alcohol Clin Exp Res 21(6):1073–1082

    CAS  PubMed  Google Scholar 

  38. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82(2):291–295

    Article  CAS  PubMed  Google Scholar 

  39. Mahalingaiah PK, Ponnusamy L, Singh KP (2015) Chronic oxidative stress causes estrogen-independent aggressive phenotype, and epigenetic inactivation of estrogen receptor alpha in MCF-7 breast cancer cells. Breast Cancer Res Treat 153(1):41–56. doi:10.1007/s10549-015-3514-0

    Article  CAS  PubMed  Google Scholar 

  40. Gago-Dominguez M, Castelao JE, Pike MC, Sevanian A, Haile RW (2005) Role of lipid peroxidation in the epidemiology and prevention of breast cancer. Cancer Epidemiol Biomarkers Prev 14(12):2829–2839. doi:10.1158/1055-9965.EPI-05-0015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported from the NIH RO1 CA131218, NHS and NHSII UM1: CA186107 and CA176726. KA Hirko was supported by the R25 CA098566 and the T32 CA009001 training grants. RT Fortner was supported by the T32 CA009001 training grant. We would like to thank the participants and staff of the Nurses’ Health Study and the Nurses’ Health Study II for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly A. Hirko.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest. The analysis presented here complies with current laws of the country in which they were performed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirko, K.A., Fortner, R.T., Hankinson, S.E. et al. Plasma fluorescent oxidation products and risk of estrogen receptor-negative breast cancer in the Nurses’ Health Study and Nurses’ Health Study II. Breast Cancer Res Treat 158, 149–155 (2016). https://doi.org/10.1007/s10549-016-3861-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-016-3861-5

Keywords

Navigation