Advertisement

Breast Cancer Research and Treatment

, Volume 154, Issue 1, pp 13–22 | Cite as

Prognostic and functional importance of the engraftment-associated genes in the patient-derived xenograft models of triple-negative breast cancers

  • Hyeong-Gon Moon
  • Keunhee Oh
  • Jiwoo Lee
  • Minju Lee
  • Ju-Yeon Kim
  • Tae-Kyung Yoo
  • Myung Won Seo
  • Ae Kyung Park
  • Han Suk Ryu
  • Eun-Jung Jung
  • Namshin Kim
  • Seongmun Jeong
  • Wonshik Han
  • Dong-Sup Lee
  • Dong-Young Noh
Preclinical study

Abstract

We aimed to identify the factors affecting the successful tumor engraftment in breast cancer patient-derived xenograft (PDX) models. Further, we investigated the prognostic significance and the functional importance of the PDX engraftment-related genes in triple-negative breast cancers (TNBC). The clinico-pathologic features of 81 breast cancer patients whose tissues were used for PDX transplantation were analyzed to identify the factors affecting the PDX engraftment. A gene signature associated with the PDX engraftment was discovered and its clinical importance was tested in a publicly available dataset and in vitro assays. Nineteen out of 81 (23.4 %) transplanted tumors were successfully engrafted into the PDX models. The engraftment rate was highest in TNBC when compared to other subtypes (p = 0.001) and in recurrent or chemotherapy-resistant tumors compared to newly diagnosed primary tumors (p = 0.024). PDX tumors originated from the TNBC cases showed more rapid tumor growth in mice. Gene expression profiling showed that down-regulation of genes involved in the tumor–immune interaction was significantly associated with the successful PDX engraftment. The engraftment gene signature was associated with worse survival outcome when tested in publicly available mRNA datasets of TNBC cases. Among the engraftment-related genes, PHLDA2, TKT, and P4HA2 showed high expression in triple-negative breast cancer cell lines, and siRNA-based gene silencing resulted in reduced cell invasion and proliferation in vitro. Our results show that the PDX engraftment may reflect the aggressive phenotype in breast cancer. Genes associated with the PDX engraftment may provide a novel prognostic biomarker and therapeutic targets in TNBC.

Keywords

Breast cancer Patient-derived xenograft Engraftment Prognosis Triple-negative breast cancer 

Notes

Acknowledgments

The authors thank Professor Kee Ryeon Kang for advices and criticisms regarding this study design and result interpretation. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A2005929), by the grant from the National R&D Program for Cancer Control, Ministry for Health and Welfare, Republic of Korea (A1220200), SNUH Research Fund 0320130430 (2013-0512), and by the grant of the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI14C1277 and HI13C2148).

Supplementary material

10549_2015_3585_MOESM1_ESM.eps (347 kb)
Supplementary Fig. 1 Xenograft tumor growth in the consecutive transplanted cases in 7 cases. Supplementary material 1 (EPS 346 kb)
10549_2015_3585_MOESM2_ESM.eps (557 kb)
Supplementary Fig. 2 Quantitative analysis of cell invasion assay. Supplementary material 2 (EPS 556 kb)
10549_2015_3585_MOESM3_ESM.pdf (56 kb)
Supplementary Table 1 Differentially expressed genes associated with the successful engraftment in patient-derived xenograft models. Supplementary material 3 (PDF 56 kb)
10549_2015_3585_MOESM4_ESM.pdf (52 kb)
Supplementary Table 2 Significant gene ontology terms related to the up-regulated genes in tumors showing successful engraftment. Supplementary material 4 (PDF 51 kb)
10549_2015_3585_MOESM5_ESM.pdf (115 kb)
Supplementary Table 3 Significant gene ontology terms related to the down-regulated genes in tumors showing successful engraftment. Supplementary material 5 (PDF 115 kb)
10549_2015_3585_MOESM6_ESM.docx (88 kb)
Supplementary material 6 (DOCX 87 kb)

References

  1. 1.
    Criscitiello C, Azim HA Jr, Schouten PC, Linn SC, Sotiriou C (2012) Understanding the biology of triple-negative breast cancer. Ann Oncol 23(Suppl 6):vi13–vi18. doi: 10.1093/annonc/mds188 CrossRefPubMedGoogle Scholar
  2. 2.
    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767. doi: 10.1172/JCI45014 PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, Savage MI, Osborne CK, Hilsenbeck SG, Chang JC, Mills GB, Lau CC, Brown PH (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21(7):1688–1698. doi: 10.1158/1078-0432.CCR-14-0432 CrossRefPubMedGoogle Scholar
  4. 4.
    Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, Delorenzi M, Piccart M, Sotiriou C (2008) Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 14(16):5158–5165. doi: 10.1158/1078-0432.CCR-07-4756 CrossRefPubMedGoogle Scholar
  5. 5.
    Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Maelandsmo GM, Roman-Roman S, Seoane J, Trusolino L, Villanueva A (2014) Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 4(9):998–1013. doi: 10.1158/2159-8290.CD-14-0001 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Landis MD, Lehmann BD, Pietenpol JA, Chang JC (2013) Patient-derived breast tumor xenografts facilitating personalized cancer therapy. Breast Cancer Res 15(1):201. doi: 10.1186/bcr3355 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Siolas D, Hannon GJ (2013) Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res 73(17):5315–5319. doi: 10.1158/0008-5472.CAN-13-1069 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Kabos P, Finlay-Schultz J, Li C, Kline E, Finlayson C, Wisell J, Manuel CA, Edgerton SM, Harrell JC, Elias A, Sartorius CA (2012) Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Res Treat 135(2):415–432. doi: 10.1007/s10549-012-2164-8 CrossRefPubMedGoogle Scholar
  9. 9.
    Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, He X, Liu S, Hoog J, Lu C, Ding L, Griffith OL, Miller C, Larson D, Fulton RS, Harrison M, Mooney T, McMichael JF, Luo J, Tao Y, Goncalves R, Schlosberg C, Hiken JF, Saied L, Sanchez C, Giuntoli T, Bumb C, Cooper C, Kitchens RT, Lin A, Phommaly C, Davies SR, Zhang J, Kavuri MS, McEachern D, Dong YY, Ma C, Pluard T, Naughton M, Bose R, Suresh R, McDowell R, Michel L, Aft R, Gillanders W, DeSchryver K, Wilson RK, Wang S, Mills GB, Gonzalez-Angulo A, Edwards JR, Maher C, Perou CM, Mardis ER, Ellis MJ (2013) Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep 4(6):1116–1130. doi: 10.1016/j.celrep.2013.08.022 CrossRefPubMedGoogle Scholar
  10. 10.
    Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, de Plater L, Guyader C, De Pinieux G, Judde JG, Rebucci M, Tran-Perennou C, Sastre-Garau X, Sigal-Zafrani B, Delattre O, Dieras V, Poupon MF (2007) A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 13(13):3989–3998. doi: 10.1158/1078-0432.CCR-07-0078 CrossRefPubMedGoogle Scholar
  11. 11.
    Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, Harris CC, McLellan MD, Fulton RS, Fulton LL, Abbott RM, Hoog J, Dooling DJ, Koboldt DC, Schmidt H, Kalicki J, Zhang Q, Chen L, Lin L, Wendl MC, McMichael JF, Magrini VJ, Cook L, McGrath SD, Vickery TL, Appelbaum E, Deschryver K, Davies S, Guintoli T, Lin L, Crowder R, Tao Y, Snider JE, Smith SM, Dukes AF, Sanderson GE, Pohl CS, Delehaunty KD, Fronick CC, Pape KA, Reed JS, Robinson JS, Hodges JS, Schierding W, Dees ND, Shen D, Locke DP, Wiechert ME, Eldred JM, Peck JB, Oberkfell BJ, Lolofie JT, Du F, Hawkins AE, O’Laughlin MD, Bernard KE, Cunningham M, Elliott G, Mason MD, Thompson DM Jr, Ivanovich JL, Goodfellow PJ, Perou CM, Weinstock GM, Aft R, Watson M, Ley TJ, Wilson RK, Mardis ER (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464(7291):999–1005. doi: 10.1038/nature08989 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Moon HG, Han W, Ahn SK, Cho N, Moon WK, Im SA, Park IA, Noh DY (2013) Breast cancer molecular phenotype and the use of HER2-targeted agents influence the accuracy of breast MRI after neoadjuvant chemotherapy. Ann Surg 257(1):133–137. doi: 10.1097/SLA.0b013e3182686bd9 CrossRefPubMedGoogle Scholar
  13. 13.
    Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13(8):2329–2334. doi: 10.1158/1078-0432.CCR-06-1109 CrossRefPubMedGoogle Scholar
  14. 14.
    Madden SF, Clarke C, Gaule P, Aherne ST, O’Donovan N, Clynes M, Crown J, Gallagher WM (2013) BreastMark: an integrated approach to mining publicly available transcriptomic datasets relating to breast cancer outcome. Breast Cancer Res 15(4):R52. doi: 10.1186/bcr3444 PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Petrillo LA, Wolf DM, Kapoun AM, Wang NJ, Barczak A, Xiao Y, Korkaya H, Baehner F, Lewicki J, Wicha M, Park JW, Spellman PT, Gray JW, van’t Veer L, Esserman LJ (2012) Xenografts faithfully recapitulate breast cancer-specific gene expression patterns of parent primary breast tumors. Breast Cancer Res Treat 135(3):913–922. doi: 10.1007/s10549-012-2226-y CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, Landis MD, Wiechmann L, Schiff R, Giuliano M, Wong H, Fuqua SW, Contreras A, Gutierrez C, Huang J, Mao S, Pavlick AC, Froehlich AM, Wu MF, Tsimelzon A, Hilsenbeck SG, Chen ES, Zuloaga P, Shaw CA, Rimawi MF, Perou CM, Mills GB, Chang JC, Lewis MT (2013) A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res 73(15):4885–4897. doi: 10.1158/0008-5472.CAN-12-4081 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, Neumayer L, Randall RL, Stijleman IJ, Welm BE, Welm AL (2011) Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 17(11):1514–1520. doi: 10.1038/nm.2454 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Visonneau S, Cesano A, Torosian MH, Miller EJ, Santoli D (1998) Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice. Am J Pathol 152(5):1299–1311PubMedCentralPubMedGoogle Scholar
  19. 19.
    Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua S, Savage M, Osborne CK, Hilsenbeck SG, Chang JC, Mills GB, Lau CC, Brown PH (2014) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. doi: 10.1158/1078-0432.CCR-14-0432 PubMedGoogle Scholar
  20. 20.
    Rody A, Karn T, Liedtke C, Pusztai L, Ruckhaeberle E, Hanker L, Gaetje R, Solbach C, Ahr A, Metzler D, Schmidt M, Muller V, Holtrich U, Kaufmann M (2011) A clinically relevant gene signature in triple negative and basal-like breast cancer. Breast Cancer Res 13(5):R97. doi: 10.1186/bcr3035 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022. doi: 10.1038/ni.2703 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Xiong G, Deng L, Zhu J, Rychahou PG, Xu R (2014) Prolyl-4-hydroxylase alpha subunit 2 promotes breast cancer progression and metastasis by regulating collagen deposition. BMC Cancer 14:1. doi: 10.1186/1471-2407-14-1 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hyeong-Gon Moon
    • 1
    • 2
  • Keunhee Oh
    • 3
  • Jiwoo Lee
    • 2
  • Minju Lee
    • 2
  • Ju-Yeon Kim
    • 4
  • Tae-Kyung Yoo
    • 1
    • 2
  • Myung Won Seo
    • 3
  • Ae Kyung Park
    • 5
  • Han Suk Ryu
    • 6
  • Eun-Jung Jung
    • 4
  • Namshin Kim
    • 7
  • Seongmun Jeong
    • 7
  • Wonshik Han
    • 1
    • 2
  • Dong-Sup Lee
    • 3
    • 8
  • Dong-Young Noh
    • 1
    • 2
  1. 1.Department of SurgerySeoul National University College of MedicineSeoulKorea
  2. 2.Laboratory of Breast Cancer Biology, Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
  3. 3.Laboratory of Immunology, Interdisciplinary Program of Tumor Biology, Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
  4. 4.Department of SurgeryGyeongsang National UniversityJinjuKorea
  5. 5.College of PharmacySunchon National UniversitySuncheonKorea
  6. 6.Department of PathologySeoul National University HospitalSeoulKorea
  7. 7.Epigenomics Research Center, Genome InstituteKorea Research Institute of Bioscience & BiotechnologyDaejeonKorea
  8. 8.Department of Biomedical Sciences, Laboratory of Immunology and Cancer BiologySeoul National University College of MedicineSeoulKorea

Personalised recommendations