Advertisement

Breast Cancer Research and Treatment

, Volume 152, Issue 2, pp 437–448 | Cite as

Race-associated biological differences among Luminal A breast tumors

  • Monica D’Arcy
  • Jodie Fleming
  • Whitney R. Robinson
  • Erin L. Kirk
  • Charles M. Perou
  • Melissa A. Troester
Epidemiology

Abstract

African-American (AA) women have higher breast cancer-specific mortality rates. A higher prevalence of the worse outcome Basal-like breast cancer subtype contributes to this, but AA women also have higher mortality even within the more favorable outcome Luminal A breast cancers. These differences may reflect treatment or health care access issues, inherent biological differences, or both. To identify potential biological differences by race among Luminal A breast cancers, gene expression data from 108 CAU and 57 AA breast tumors were analyzed. Race-associated genes were evaluated for associations with survival. Finally, expression of race- and survival-associated genes was evaluated in normal tissue of AA and CAU women. Six genes (ACOX2, MUC1, CRYBB2, PSPH, SQLE, TYMS) were differentially expressed by race among Luminal A breast cancers and were associated with survival (HR <0.8, HR >1.25). For all six genes, tumors in AA had higher expression of poor prognosis genes (CRYBB2, PSPH, SQLE, TYMS) and lower expression of good prognosis genes (ACOX2, MUC1). A score based on all six genes predicted survival in a large independent dataset (HR = 1.9 top vs. bottom quartile, 95 % CI: 1.4–2.5). For four genes, normal tissue of AA and CAU women showed similar expression (ACOX2, MUC1, SQLE, TYMS); however, the poor outcome-associated genes CRYBB2 and PSPH were more highly expressed in AA versus CAU women’s normal tissue. This analysis identified gene expression differences that may contribute to mortality disparities and suggests that among Luminal A breast tumors there are biological differences between AA and CAU patients. Some of these differences (CRYBB2 and PSPH) may exist from the earliest stages of tumor development, or may even precede malignancy.

Keywords

Breast cancer mortality disparity Luminal A tumors Gene expression Survival 

Notes

Acknowledgments

We acknowledge Michael Grauer, MS for reading this manuscript for clarity, and Chris Fan, PhD, for obtaining and sending the METABRIC data to MD. This study was funded by the National Institutes of Health (NIH) Cancer Control and Education Program pre-doctoral fellowship (5 R25 CA057726-23), and by the following grants from the NIH: R21 CA175783, U54 CA156735, U01 CA 179715, U01 ES 019472, P50 CA058223, K01CA172717.

Compliance with ethical standard

Conflict of interest

C.M.P is an equity stock holder, and Board of Director Member, of BioClassifier LLC and GeneCentric Diagnostics. C.M.P is also listed an inventor on a patent application for the PAM50 assay.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

10549_2015_3474_MOESM1_ESM.xlsx (21 kb)
Supplementary material 1 (XLSX 21 kb)
10549_2015_3474_MOESM2_ESM.eps (81 kb)
Supplementary material 2 (EPS 81 kb)

References

  1. 1.
    American Cancer Society (2013) Breast cancer facts and figures 2013–2014. ACS, AtlantaGoogle Scholar
  2. 2.
    Carey LA, Perou CM, Livasy CA et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502. doi: 10.1001/jama.295.21.2492 PubMedCrossRefGoogle Scholar
  3. 3.
    O’Brien KM, Cole SR, Tse CK et al (2010) Intrinsic breast tumor subtypes, race, and long-term survival in the Carolina Breast Cancer Study. Clin Cancer Res 16:6100–6110. doi: 10.1158/1078-0432.CCR-10-1533 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Reeder-Hayes KE, Meyer AM, Dusetzina SB et al (2014) Racial disparities in initiation of adjuvant endocrine therapy of early breast cancer. Breast Cancer Res Treat 145:743–751. doi: 10.1007/s10549-014-2957-z PubMedCrossRefGoogle Scholar
  5. 5.
    Albain KS, Unger JM, Crowley JJ et al (2009) Racial disparities in cancer survival among randomized clinical trials patients of the Southwest Oncology Group. J Natl Cancer Inst 101:984–992. doi: 10.1093/jnci/djp175;10.1093/jnci/djp175 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Field LA, Love B, Deyarmin B et al (2012) Identification of differentially expressed genes in breast tumors from African American compared with Caucasian women. Cancer 118:1334–1344. doi: 10.1002/cncr.26405 PubMedCrossRefGoogle Scholar
  7. 7.
    Grunda JM, Steg AD, He Q et al (2012) Differential expression of breast cancer-associated genes between stage- and age-matched tumor specimens from African- and Caucasian-American women diagnosed with breast cancer. BMC Res Notes 5:248. doi: 10.1186/1756-0500-5-248 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Martin DN, Boersma BJ, Yi M et al (2009) Differences in the tumor microenvironment between African-American and European-American breast cancer patients. PLoS One 4:e4531. doi: 10.1371/journal.pone.0004531 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Stewart PA, Luks J, Roycik MD et al (2013) Differentially expressed transcripts and dysregulated signaling pathways and networks in African American breast cancer. PLoS One 8:e82460. doi: 10.1371/journal.pone.0082460 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Sun X, Casbas-Hernandez P, Bigelow C et al (2012) Normal breast tissue of obese women is enriched for macrophage markers and macrophage-associated gene expression. Breast Cancer Res Treat 131:1003–1012. doi: 10.1007/s10549-011-1789-3 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Pirone JR, D’Arcy M, Stewart DA et al (2012) Age-associated gene expression in normal breast tissue mirrors qualitative age-at-incidence patterns for breast cancer. Cancer Epidemiol Biomark Prev 21:1735–1744. doi: 10.1158/1055-9965.EPI-12-0451 CrossRefGoogle Scholar
  12. 12.
    Casbas-Hernandez P, Sun X, Roman-Perez E et al (2015) Tumor intrinsic subtype is reflected in cancer-adjacent tissue. Cancer Epidemiol Biomark Prev 24(2):406–414. doi: 10.1158/1055-9965.EPI-14-0934
  13. 13.
    Curtis C, Shah SP, Chin SF et al (2012) The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 486:346–352. doi: 10.1038/nature10983 PubMedCentralPubMedGoogle Scholar
  14. 14.
    Prat A, Parker JS, Karginova O et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68. doi: 10.1186/bcr2635 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009. doi: 10.1056/NEJMoa021967 PubMedCrossRefGoogle Scholar
  16. 16.
    Benito M, Parker J, Du Q et al (2004) Adjustment of systematic microarray data biases. Bioinformatics 20:105–114PubMedCrossRefGoogle Scholar
  17. 17.
    Parker JS, Mullins M, Cheang MC et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167. doi: 10.1200/JCO.2008.18.1370 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article 3. doi: 10.2202/1544-6115.1027
  19. 19.
    de Hoon MJ, Imoto S, Nolan J et al (2004) Open source clustering software. Bioinformatics 20:1453–1454. doi: 10.1093/bioinformatics/bth078 PubMedCrossRefGoogle Scholar
  20. 20.
    Saldanha AJ (2004) Java Treeview–extensible visualization of microarray data. Bioinformatics 20:3246–3248. doi: 10.1093/bioinformatics/bth349 PubMedCrossRefGoogle Scholar
  21. 21.
    Jovov B, Araujo-Perez F, Sigel CS et al (2012) Differential gene expression between African American and European American colorectal cancer patients. PLoS One 7:e30168. doi: 10.1371/journal.pone.0030168 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Wallace TA, Prueitt RL, Yi M et al (2008) Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res 68:927–936. doi: 10.1158/0008-5472.CAN-07-2608 PubMedCrossRefGoogle Scholar
  23. 23.
    Ferguson SE, Olshen AB, Levine DA et al (2006) Molecular profiling of endometrial cancers from African-American and Caucasian women. Gynecol Oncol 101:209–213. doi: 10.1016/j.ygyno.2005.11.028 PubMedCrossRefGoogle Scholar
  24. 24.
    Sturgill GM, Bala E, Yaniglos SS et al (2010) Mutation screen of beta-crystallin genes in 274 patients with age-related macular degeneration. Ophthalmic Genet 31:129–134. doi: 10.3109/13816810.2010.486774 PubMedCrossRefGoogle Scholar
  25. 25.
    Alers JC, Rochat J, Krijtenburg PJ et al (2000) Identification of genetic markers for prostatic cancer progression. Lab Invest 80:931–942PubMedCrossRefGoogle Scholar
  26. 26.
    Kim SK, Jung WH, Koo JS (2014) Differential expression of enzymes associated with serine/glycine metabolism in different breast cancer subtypes. PLoS One 9:e101004. doi: 10.1371/journal.pone.0101004 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi: 10.1016/j.cell.2011.02.013 PubMedCrossRefGoogle Scholar
  28. 28.
    Johansson A, Curran JE, Johnson MP et al (2011) Identification of ACOX2 as a shared genetic risk factor for preeclampsia and cardiovascular disease. Eur J Hum Genet 19:796–800. doi: 10.1038/ejhg.2011.19 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Hodo Y, Hashimoto S, Honda M et al (2010) Comprehensive gene expression analysis of 5′-end of mRNA identified novel intronic transcripts associated with hepatocellular carcinoma. Genomics 95:217–223. doi: 10.1016/j.ygeno.2010.01.004 PubMedCrossRefGoogle Scholar
  30. 30.
    Zaretsky JZ, Barnea I, Aylon Y et al (2006) MUC1 gene overexpressed in breast cancer: structure and transcriptional activity of the MUC1 promoter and role of estrogen receptor alpha (ERalpha) in regulation of the MUC1 gene expression. Mol Cancer 5:57. doi: 10.1186/1476-4598-5-57 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Deng J, Wang L, Chen H et al (2013) The role of tumour-associated MUC1 in epithelial ovarian cancer metastasis and progression. Cancer Metastasis Rev 32:535–551. doi: 10.1007/s10555-013-9423-y PubMedCrossRefGoogle Scholar
  32. 32.
    Wang L, Ma J, Liu F et al (2007) Expression of MUC1 in primary and metastatic human epithelial ovarian cancer and its therapeutic significance. Gynecol Oncol 105:695–702. doi: 10.1016/j.ygyno.2007.02.004 PubMedCrossRefGoogle Scholar
  33. 33.
    Li Y, Cozzi PJ (2007) MUC1 is a promising therapeutic target for prostate cancer therapy. Curr Cancer Drug Targets 7:259–271PubMedCrossRefGoogle Scholar
  34. 34.
    Helms MW, Kemming D, Pospisil H et al (2008) Squalene epoxidase, located on chromosome 8q24.1, is upregulated in 8q+ breast cancer and indicates poor clinical outcome in stage I and II disease. Br J Cancer 99:774–780. doi: 10.1038/sj.bjc.6604556 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Martinez-Balibrea E, Abad A, Martinez-Cardus A et al (2010) UGT1A and TYMS genetic variants predict toxicity and response of colorectal cancer patients treated with first-line irinotecan and fluorouracil combination therapy. Br J Cancer 103:581–589. doi: 10.1038/sj.bjc.6605776 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Donada M, Bonin S, Barbazza R et al (2013) Management of stage II colon cancer—the use of molecular biomarkers for adjuvant therapy decision. BMC Gastroenterol 13:36. doi: 10.1186/1471-230X-13-36 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Loganayagam A, Arenas Hernandez M, Corrigan A et al (2013) Pharmacogenetic variants in the DPYD, TYMS, CDA and MTHFR genes are clinically significant predictors of fluoropyrimidine toxicity. Br J Cancer 108:2505–2515. doi: 10.1038/bjc.2013.262 PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Lu Y, Zhuo C, Cui B et al (2013) TYMS serves as a prognostic indicator to predict the lymph node metastasis in Chinese patients with colorectal cancer. Clin Biochem 46:1478–1483. doi: 10.1016/j.clinbiochem.2013.06.017 PubMedCrossRefGoogle Scholar
  39. 39.
    Yokomise H, Liu D, Chang S et al (2013) Biomarkers as prognostic factors for cN2 or 3 non-small cell lung cancer treated by induction chemoradiotherapy and surgery. Anticancer Res 33:1107–1115PubMedGoogle Scholar
  40. 40.
    Rummel S, Penatzer CE, Shriver CD et al (2014) PSPHL and breast cancer in African American women: causative gene or population stratification? BMC Genet 15:38. doi: 10.1186/1471-2156-15-38 PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Sturtz LA, Melley J, Mamula K et al (2014) Outcome disparities in African American women with triple negative breast cancer: a comparison of epidemiological and molecular factors between African American and Caucasian women with triple negative breast cancer. BMC Cancer 14:62. doi: 10.1186/1471-2407-14-62 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Monica D’Arcy
    • 1
    • 2
  • Jodie Fleming
    • 3
  • Whitney R. Robinson
    • 1
    • 2
  • Erin L. Kirk
    • 1
  • Charles M. Perou
    • 2
    • 4
    • 5
  • Melissa A. Troester
    • 1
    • 2
    • 5
  1. 1.Department of Epidemiology, CB 7435North Carolina Central UniversityDurhamUSA
  2. 2.Lineberger Comprehensive Cancer CenterNorth Carolina Central UniversityDurhamUSA
  3. 3.Department of BiologyNorth Carolina Central UniversityDurhamUSA
  4. 4.Department of GeneticsNorth Carolina Central UniversityDurhamUSA
  5. 5.Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations