Advertisement

Breast Cancer Research and Treatment

, Volume 152, Issue 2, pp 271–282 | Cite as

DNA repair capacity is impaired in healthy BRCA1 heterozygous mutation carriers

  • Tereza Vaclová
  • Gonzalo Gómez-López
  • Fernando Setién
  • José María García Bueno
  • José Antonio Macías
  • Alicia Barroso
  • Miguel Urioste
  • Manel Esteller
  • Javier Benítez
  • Ana Osorio
Preclinical study

Abstract

BRCA1 germline mutations increase the lifetime risk of developing breast and ovarian cancers. However, taking into account the differences in disease manifestation among mutation carriers, it is probable that different BRCA1 mutations have distinct haploinsufficiency effects and lead to the formation of different phenotypes. Using lymphoblastoid cell lines derived from heterozygous BRCA1 mutation carriers and non-carriers, we investigated the haploinsufficiency effects of various mutation types using qPCR, immunofluorescence, and microarray technology. Lymphoblastoid cell lines carrying a truncating mutation showed significantly lower BRCA1 mRNA and protein levels and higher levels of gamma-H2AX than control cells or those harboring a missense mutation, indicating greater spontaneous DNA damage. Cells carrying either BRCA1 mutation type showed impaired RAD51 foci formation, suggesting defective repair in mutated cells. Moreover, compared to controls, cell lines carrying missense mutations displayed a more distinct expression profile than cells with truncating mutations, which is consistent with different mutations giving rise to distinct phenotypes. Alterations in the immune response pathway in cells harboring missense mutations point to possible mechanisms of breast cancer initiation in carriers of these mutations. Our findings offer insight into how various heterozygous mutations in BRCA1 could lead to impairment of BRCA1 function and provide strong evidence of haploinsufficiency in BRCA1 mutation carriers.

Keywords

BRCA1 Haploinsufficiency DNA repair Gene expression profiling Breast cancer 

Notes

Acknowledgments

We thank the Confocal Microscopy Core Unit at CNIO for their help with high-throughput microscopy, and all the families who volunteered to participate in this study. The study was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) SAF2010-20493 and the Spanish Network on Rare Diseases (CIBERER).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10549_2015_3459_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 22 kb)
10549_2015_3459_MOESM2_ESM.docx (1.6 mb)
Supplementary material 2 (DOCX 1683 kb)

References

  1. 1.
    Zhang J, Powell SN (2005) The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol Cancer Res 3:531–539PubMedCrossRefGoogle Scholar
  2. 2.
    Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, Loman N, Olsson H, Johannsson O, Borg A, Pasini B, Radice P et al (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72:1117–1130PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Chen S, Iversen ES, Friebel T, Finkelstein D, Weber BL, Eisen A, Peterson LE, Schildkraut JM, Isaacs C, Peshkin BN, Corio C, Leondaridis L et al (2006) Characterization of BRCA1 and BRCA2 mutations in a large United States sample. J Clin Oncol 24:863–871PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Milne RL, Osorio A, Cajal TR, Vega A, Llort G, de la Hoya M, Diez O, Alonso MC, Lazaro C, Blanco I, Sanchez-de-Abajo A, Caldes T et al (2008) The average cumulative risks of breast and ovarian cancer for carriers of mutations in BRCA1 and BRCA2 attending genetic counseling units in Spain. Clin Cancer Res 14:2861–2869PubMedCrossRefGoogle Scholar
  5. 5.
    Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Gayther SA, Warren W, Mazoyer S, Russell PA, Harrington PA, Chiano M, Seal S, Hamoudi R, van Rensburg EJ, Dunning AM, Love R, Evans G et al (1995) Germline mutations of the BRCA1 gene in breast and ovarian cancer families provide evidence for a genotype-phenotype correlation. Nat Genet 11:428–433PubMedCrossRefGoogle Scholar
  7. 7.
    Thompson D, Easton D, Breast Cancer Linkage Consortium (2002) Variation in BRCA1 cancer risks by mutation position. Cancer Epidemiol Biomarkers Prev 11:329–336PubMedGoogle Scholar
  8. 8.
    Drost R, Bouwman P, Rottenberg S, Boon U, Schut E, Klarenbeek S, Klijn C, van der Heijden I, van der Gulden H, Wientjens E, Pieterse M, Catteau A et al (2011) BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. Cancer Cell 20:797–809PubMedCrossRefGoogle Scholar
  9. 9.
    Waddell N, Ten Haaf A, Marsh A, Johnson J, Walker LC, kConfab Investigators, Gongora M, Brown M, Grover P, Girolami M, Grimmond S, Chenevix-Trench G et al (2008) BRCA1 and BRCA2 missense variants of high and low clinical significance influence lymphoblastoid cell line post-irradiation gene expression. PLoS Gen 4:e1000080CrossRefGoogle Scholar
  10. 10.
    Nikkila J, Parplys AC, Pylkas K, Bose M, Huo Y, Borgmann K, Rapakko K, Nieminen P, Xia B, Pospiech H, Winqvist R (2013) Heterozygous mutations in PALB2 cause DNA replication and damage response defects. Nat Commun 4:2578PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Grasso F, Giacomini E, Sanchez M, Degan P, Gismondi V, Mazzei F, Varesco L, Viel A, Bignami M (2014) Genetic instability in lymphoblastoid cell lines expressing biallelic and monoallelic variants in the human MUTYH gene. Hum Mol Genet 23:3843–3852PubMedCrossRefGoogle Scholar
  12. 12.
    Kote-Jarai Z, Williams RD, Cattini N, Copeland M, Giddings I, Wooster R, tePoele RH, Workman P, Gusterson B, Peacock J, Gui G, Campbell C et al (2004) Gene expression profiling after radiation-induced DNA damage is strongly predictive of BRCA1 mutation carrier status. Clin Cancer Res 10:958–963PubMedCrossRefGoogle Scholar
  13. 13.
    Kote-Jarai Z, Matthews L, Osorio A, Shanley S, Giddings I, Moreews F, Locke I, Evans DG, Eccles D, Carrier Clinic C, Williams RD, Girolami M et al (2006) Accurate prediction of BRCA1 and BRCA2 heterozygous genotype using expression profiling after induced DNA damage. Clin Cancer Res 12:3896–3901PubMedCrossRefGoogle Scholar
  14. 14.
    Bellacosa A, Godwin AK, Peri S, Devarajan K, Caretti E, Vanderveer L, Bove B, Slater C, Zhou Y, Daly M, Howard S, Campbell KS et al (2010) Altered gene expression in morphologically normal epithelial cells from heterozygous carriers of BRCA1 or BRCA2 mutations. Cancer Prev Res 3:48–61CrossRefGoogle Scholar
  15. 15.
    Feilotter HE, Michel C, Uy P, Bathurst L, Davey S (2014) BRCA1 haploinsufficiency leads to altered expression of genes involved in cellular proliferation and development. PLoS One 9:e100068PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Salmon AY, Salmon-Divon M, Zahavi T, Barash Y, Levy-Drummer RS, Jacob-Hirsch J, Peretz T (2013) Determination of molecular markers for BRCA1 and BRCA2 heterozygosity using gene expression profiling. Cancer Prev Res 6:82–90CrossRefGoogle Scholar
  17. 17.
    Conti E, Izaurralde E (2005) Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr Opin Cell Biol 17:316–325PubMedCrossRefGoogle Scholar
  18. 18.
    Okada S, Ouchi T (2003) Cell cycle differences in DNA damage-induced BRCA1 phosphorylation affect its subcellular localization. J Biol Chem 278:2015–2020PubMedCrossRefGoogle Scholar
  19. 19.
    Thomas JE, Smith M, Tonkinson JL, Rubinfeld B, Polakis P (1997) Induction of phosphorylation on BRCA1 during the cell cycle and after DNA damage. Cell Growth Differ 8:801–809PubMedGoogle Scholar
  20. 20.
    Buisson M, Anczukow O, Zetoune AB, Ware MD, Mazoyer S (2006) The 185delAG mutation (c.68_69delAG) in the BRCA1 gene triggers translation reinitiation at a downstream AUG codon. Hum Mutat 27:1024–1029PubMedCrossRefGoogle Scholar
  21. 21.
    Roy R, Chun J, Powell SN (2011) BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer 12:68–78PubMedCrossRefGoogle Scholar
  22. 22.
    Mulrane L, McGee SF, Gallagher WM, O’Connor DP (2013) miRNA dysregulation in breast cancer. Cancer Res 73:6554–6562PubMedCrossRefGoogle Scholar
  23. 23.
    Perrin-Vidoz L, Sinilnikova OM, Stoppa-Lyonnet D, Lenoir GM, Mazoyer S (2002) The nonsense-mediated mRNA decay pathway triggers degradation of most BRCA1 mRNAs bearing premature termination codons. Hum Mol Genet 11:2805–2814PubMedCrossRefGoogle Scholar
  24. 24.
    Anczukow O, Ware MD, Buisson M, Zetoune AB, Stoppa-Lyonnet D, Sinilnikova OM, Mazoyer S (2008) Does the nonsense-mediated mRNA decay mechanism prevent the synthesis of truncated BRCA1, CHK2, and p53 proteins? Hum Mutat 29:65–73PubMedCrossRefGoogle Scholar
  25. 25.
    Lovelock PK, Healey S, Au W, Sum EY, Tesoriero A, Wong EM, Hinson S, Brinkworth R, Bekessy A, Diez O, Izatt L, Solomon E et al (2006) Genetic, functional, and histopathological evaluation of two C-terminal BRCA1 missense variants. J Med Genet 43:74–83PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Bouwman P, van der Gulden H, van der Heijden I, Drost R, Klijn CN, Prasetyanti P, Pieterse M, Wientjens E, Seibler J, Hogervorst FB, Jonkers J (2013) A high-throughput functional complementation assay for classification of BRCA1 missense variants. Cancer Discov 3:1142–1155PubMedCrossRefGoogle Scholar
  27. 27.
    Cousineau I, Belmaaza A (2007) BRCA1 haploinsufficiency, but not heterozygosity for a BRCA1-truncating mutation, deregulates homologous recombination. Cell Cycle 6:962–971PubMedCrossRefGoogle Scholar
  28. 28.
    Huszno J, Budryk M, Kolosza Z, Nowara E (2013) The influence of BRCA1/BRCA2 mutations on toxicity related to chemotherapy and radiotherapy in early breast cancer patients. Oncology 85:278–282PubMedCrossRefGoogle Scholar
  29. 29.
    Fan S, Yuan R, Ma YX, Meng Q, Goldberg ID, Rosen EM (2001) Mutant BRCA1 genes antagonize phenotype of wild-type BRCA1. Oncogene 20:8215–8235PubMedCrossRefGoogle Scholar
  30. 30.
    Sylvain V, Lafarge S, Bignon YJ (2002) Dominant-negative activity of a Brca1 truncation mutant: effects on proliferation, tumorigenicity in vivo, and chemosensitivity in a mouse ovarian cancer cell line. Int J Oncol 20:845–853PubMedGoogle Scholar
  31. 31.
    You F, Chiba N, Ishioka C, Parvin JD (2004) Expression of an amino-terminal BRCA1 deletion mutant causes a dominant growth inhibition in MCF10A cells. Oncogene 23:5792–5798PubMedCrossRefGoogle Scholar
  32. 32.
    Coene ED, Gadelha C, White N, Malhas A, Thomas B, Shaw M, Vaux DJ (2011) A novel role for BRCA1 in regulating breast cancer cell spreading and motility. J Cell Biol 192:497–512PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Bi X, Hameed M, Mirani N, Pimenta EM, Anari J, Barnes BJ (2011) Loss of interferon regulatory factor 5 (IRF5) expression in human ductal carcinoma correlates with disease stage and contributes to metastasis. Breast Cancer Res 13:R111PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Skelhorne-Gross G, Reid AL, Apostoli AJ, Di Lena MA, Rubino RE, Peterson NT, Schneider M, SenGupta SK, Gonzalez FJ, Nicol CJ (2012) Stromal adipocyte PPARgamma protects against breast tumorigenesis. Carcinogenesis 33:1412–1420PubMedCrossRefGoogle Scholar
  35. 35.
    Apostoli AJ, Skelhorne-Gross GE, Rubino RE, Peterson NT, Di Lena MA, Schneider MM, SenGupta SK, Nicol CJ (2014) Loss of PPARgamma expression in mammary secretory epithelial cells creates a pro-breast tumorigenic environment. Int J Cancer 134:1055–1066PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Millevoi S, Bernat S, Telly D, Fouque F, Gladieff L, Favre G, Vagner S, Toulas C (2010) The c.5242C > A BRCA1 missense variant induces exon skipping by increasing splicing repressors binding. Breast Cancer Res Treat 120:391–399PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tereza Vaclová
    • 1
  • Gonzalo Gómez-López
    • 2
  • Fernando Setién
    • 3
  • José María García Bueno
    • 4
  • José Antonio Macías
    • 5
  • Alicia Barroso
    • 1
  • Miguel Urioste
    • 6
  • Manel Esteller
    • 3
    • 7
    • 8
  • Javier Benítez
    • 1
    • 9
    • 10
  • Ana Osorio
    • 1
    • 9
  1. 1.Human Genetics Group, Human Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
  2. 2.Bioinformatics Unit, Structural Biology and Biocomputing ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
  3. 3.Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC)Bellvitge Biomedical Biomedical Research Institute (IDIBELL)BarcelonaSpain
  4. 4.Medical Oncology SectionComplejo Hospitalario Universitario de AlbaceteAlbaceteSpain
  5. 5.Hereditary Cancer Unit, Medical Oncology ServiceHospital Morales MeseguerMurciaSpain
  6. 6.Familial Cancer Unit, Human Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
  7. 7.Department of Physiological Sciences II, School of MedicineUniversity of BarcelonaBarcelonaSpain
  8. 8.Institucio Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  9. 9.Spanish Network on Rare Diseases (CIBERER)MadridSpain
  10. 10.Genotyping Unit (CEGEN), Human Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain

Personalised recommendations