Breast Cancer Research and Treatment

, Volume 152, Issue 1, pp 17–28 | Cite as

Inhibition of breast cancer cell migration by activation of cAMP signaling

  • Hongli Dong
  • Kevin P. Claffey
  • Stefan Brocke
  • Paul M. Epstein
Preclinical study


Almost all deaths from breast cancer arise from metastasis of the transformed cells to other sites in the body. Hence, uncovering a means of inhibiting breast cancer cell migration would provide a significant advance in the treatment of this disease. Stimulation of the cAMP signaling pathway has been shown to inhibit migration and motility of a number of cell types. A very effective way of selectively stimulating cAMP signaling is through inhibition of cyclic nucleotide phosphodiesterases (PDEs). Therefore, we examined full expression profiles of all known PDE genes at the mRNA and protein levels in four human breast cancer cell lines and eight patients’ breast cancer tissues. By these analyses, expression of almost all PDE genes was seen in both cell lines and tissues. In the cell lines, appreciable expression was seen for PDEs 1C, 2A, 3B, 4A, 4B, 4D, 5A, 6B, 6C, 7A, 7B, 8A, 9A, 10A, and 11A. In patients’ tissues, appreciable expression was seen for PDEs 1A, 3B, 4A, 4B, 4C, 4D, 5A, 6B, 6C, 7A, 7B, 8A, 8B, and 9A. PDE8A mRNA in particular is prominently expressed in all cell lines and patients’ tissue samples examined. We show here that stimulation of cAMP signaling with cAMP analogs, forskolin, and PDE inhibitors, including selective inhibitors of PDE3, PDE4, PDE7, and PDE8, inhibit aggressive triple negative MDA-MB-231 breast cancer cell migration. Under the same conditions, these agents had little effect on breast cancer cell proliferation. This study demonstrates that PDE inhibitors inhibit breast cancer cell migration, and thus may be valuable therapeutic targets for inhibition of breast cancer metastasis. Since PDE8A is expressed in all breast cancer samples, and since dipyridamole, which inhibits PDE8, and PF-04957325, a selective PDE8 inhibitor, both inhibit migration, it suggests that PDE8A may be a valuable novel target for treatment of this disease.


Breast cancer Cyclic nucleotide phosphodiesterase Cell migration cAMP signaling 



The authors acknowledge support for this work by Grants from the Smart Family Foundation, the Connecticut Breast Health Initiative Inc., the State of Connecticut Department of Public Health, and the National Multiple Sclerosis Society. PE dedicates this paper in memory of his sweet, beautiful, loving daughter, Serena Rae Epstein (March 22, 1984–July 1, 2011), who has been and continues to be his inspiration for everything he does.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that all experiments reported in this publication were performed in compliance with all current laws and regulations of the United States of America.

Supplementary material

10549_2015_3445_MOESM1_ESM.pdf (238 kb)
Supplementary material 1 (PDF 239 kb)


  1. 1.
    Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12:895–904. doi: 10.1038/nm1469 CrossRefPubMedGoogle Scholar
  2. 2.
    Fleming YM, Frame MC, Houslay MD (2004) PDE4-regulated cAMP degradation controls the assembly of integrin-dependent actin adhesion structures and REF52 cell migration. J Cell Sci 117:2377–2388. doi: 10.1242/jcs.01096 CrossRefPubMedGoogle Scholar
  3. 3.
    Lyle KS, Raaijmakers JH, Bruinsma W, Bos JL, de Rooij J (2008) cAMP-induced Epac-Rap activation inhibits epithelial cell migration by modulating focal adhesion and leading edge dynamics. Cell Signal 20:1104–1116. doi: 10.1016/j.cellsig.2008.01.018 CrossRefPubMedGoogle Scholar
  4. 4.
    Netherton SJ, Maurice DH (2005) Vascular endothelial cell cyclic nucleotide phosphodiesterases and regulated cell migration: implications in angiogenesis. Mol Pharmacol 67:263–272. doi: 10.1124/mol.104.004853 CrossRefPubMedGoogle Scholar
  5. 5.
    Dua P, Gude RP (2008) Pentoxifylline impedes migration in B16F10 melanoma by modulating Rho GTPase activity and actin organisation. Eur J Cancer 44:1587–1595. doi: 10.1016/j.ejca.2008.04.009 CrossRefPubMedGoogle Scholar
  6. 6.
    Murata K, Sudo T, Kameyama M, Fukuoka H, Muka M, Doki Y, Sasaki Y, Ishikawa O, Kimura Y, Imaoka S (2000) Cyclic AMP specific phosphodiesterase activity and colon cancer cell motility. Clin Exp Metastasis 18:599–604. doi: 10.1023/A:1011926116777 CrossRefPubMedGoogle Scholar
  7. 7.
    Burdyga A, Conant A, Haynes L, Zhang J, Jalink K, Sutton R, Neoptolemos J, Costello E, Tepikin A (2013) cAMP inhibits migration, ruffling and paxillin accumulation in focal adhesions of pancreatic ductal adenocarcinoma cells: effects of PKA and EPAC. Biochim Biophys Acta 1833:2664–2672. doi: 10.1016/j.bbamcr.2013.06.011 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zimmerman NP, Roy I, Hauser AD, Wilson JM, Williams CL, Dwinell MB (2013) Cyclic AMP regulates the migration and invasion potential of human pancreatic cancer cells. Mol Carcinog 54:203–215. doi: 10.1002/mc.22091 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ou Y, Zheng X, Gao Y, Shu M, Leng T, Li Y, Yin W, Zhu W, Huang Y, Zhou Y, Tang J, Qiu P, Yan G, Hu J, Ruan H, Hu H (2014) Activation of cyclic AMP/PKA pathway inhibits bladder cancer cell invasion by targeting MAP4-dependent microtubule dynamics. Urol Oncol 32:47. e21–47. e48. doi: 10.1016/j.urolonc.2013.06.017 CrossRefGoogle Scholar
  10. 10.
    Lee JW, Lee J, Moon EY (2014) HeLa human cervical cancer cell migration is inhibited by treatment with dibutyryl-cAMP. Anticancer Res 34:3447–3455PubMedGoogle Scholar
  11. 11.
    Baillie GS (2009) Compartmentalized signalling: spatial regulation of cAMP by the action of compartmentalized phosphodiesterases. FEBS J 276:1790–1799. doi: 10.1111/j.1742-4658.2009.06926.x CrossRefPubMedGoogle Scholar
  12. 12.
    Houslay MD (2010) Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem Sci 35:91–100. doi: 10.1016/j.tibs.2009.09.007 CrossRefPubMedGoogle Scholar
  13. 13.
    Lomas O, Zaccolo M (2014) Phosphodiesterases maintain signaling fidelity via compartmentalization of cyclic nucleotides. Physiology 29:141–149. doi: 10.1152/physiol.00040.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Conti M, Mika D, Richter W (2014) Cyclic AMP compartments and signaling specificity: role of cyclic nucleotide phosphodiesterases. J Gen Physiol 143:29–38. doi: 10.1085/jgp.201311083 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lerner A, Epstein PM (2006) Cyclic nucleotide phosphodiesterases as targets for treatment of haematological malignancies. Biochem J 393:21–41. doi: 10.1042/BJ20051368 CrossRefPubMedGoogle Scholar
  16. 16.
    Francis SH, Blount MA, Corbin JD (2011) Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev 91:651–690. doi: 10.1152/physrev.00030.2010 CrossRefPubMedGoogle Scholar
  17. 17.
    Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC (2014) Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 13:290–314. doi: 10.1038/nrd4228 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ahmad F, Murata T, Shimizu K, Degerman E, Maurice D, Manganiello V (2015) Cyclic nucleotide phosphodiesterases: important signaling modulators and therapeutic targets. Oral Dis 21:e25–e50. doi: 10.1111/odi.12275 CrossRefPubMedGoogle Scholar
  19. 19.
    Drees M, Zimmermann R, Eisenbrand G (1993) 3′,5′-Cyclic nucleotide phosphodiesterase in tumor cells as potential target for tumor growth inhibition. Cancer Res 53:3058–3061PubMedGoogle Scholar
  20. 20.
    McEwan DG, Brunton VG, Baillie GS, Leslie NR, Houslay MD, Frame MC (2007) Chemoresistant KM12C colon cancer cells are addicted to low cyclic AMP levels in a phosphodiesterase 4-regulated compartment via effects on phosphoinositide 3-kinase. Cancer Res 67:5248–5257. doi: 10.1158/0008-5472.CAN-07-0097 CrossRefPubMedGoogle Scholar
  21. 21.
    O’Connor KL, Shaw LM, Mercurio AM (1998) Release of cAMP gating by the alpha6beta4 integrin stimulates lamellae formation and the chemotactic migration of invasive carcinoma cells. J Cell Biol 143:1749–1760. doi: 10.1083/jcb.143.6.1749 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Clarysse L, Gueguinou M, Potier-Cartereau M, Vandecasteele G, Bougnoux P, Chevalier S, Chantome A, Vandier C (2014) cAMP-PKA inhibition of SK3 channel reduced both Ca(2+) entry and cancer cell migration by regulation of SK3-Orai1 complex. Pflugers Arch 466:1921–1932. doi: 10.1007/s00424-013-1435-5 CrossRefPubMedGoogle Scholar
  23. 23.
    Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514. doi: 10.1126/science.279.5350.509 CrossRefPubMedGoogle Scholar
  24. 24.
    Raftopoulou M, Hall A (2004) Cell migration: rho GTPases lead the way. Dev Biol 265:23–32. doi: 10.1016/j.ydbio.2003.06.003 CrossRefPubMedGoogle Scholar
  25. 25.
    Lang P, Gesbert F, Delespine-Carmagnat M, Stancou R, Pouchelet M, Bertoglio J (1996) Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J 15:510–519PubMedPubMedCentralGoogle Scholar
  26. 26.
    O’Connor KL, Nguyen BK, Mercurio AM (2000) RhoA function in lamellae formation and migration is regulated by the alpha6beta4 integrin and cAMP metabolism. J Cell Biol 148:253–258. doi: 10.1083/jcb.148.2.253 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Serrels B, Sandilands E, Serrels A, Baillie G, Houslay MD, Brunton VG, Canel M, Machesky LM, Anderson KI, Frame MC (2010) A complex between FAK, RACK1, and PDE4D5 controls spreading initiation and cancer cell polarity. Curr Biol 20:1086–1092. doi: 10.1016/j.cub.2010.04.042 CrossRefPubMedGoogle Scholar
  28. 28.
    Lahlou H, Sanguin-Gendreau V, Zuo D, Cardiff RD, McLean GW, Frame MC, Muller WJ (2007) Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression. Proc Natl Acad Sci USA 104:20302–20307. doi: 10.1073/pnas.0710091104 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dong H, Osmanova V, Epstein PM, Brocke S (2006) Phosphodiesterase 8 (PDE8) regulates chemotaxis of activated lymphocytes. Biochem Biophys Res Commun 345:713–719. doi: 10.1016/j.bbrc.2006.04.143 CrossRefPubMedGoogle Scholar
  30. 30.
    Vang AG, Ben-Sasson SZ, Dong H, Kream B, DeNinno MP, Claffey MM, Housley W, Clark RB, Epstein PM, Brocke S (2010) PDE8 regulates rapid Teff cell adhesion and proliferation independent of ICER. PLoS One 5:e12011. doi: 10.1371/journal.pone.0012011 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Brown KM, Day JP, Huston E, Zimmermann B, Hampel K, Christian F, Romano D, Terhzaz S, Lee LC, Willis MJ, Morton DB, Beavo JA, Shimizu-Albergine M, Davies SA, Kolch W, Houslay MD, Baillie GS (2013) Phosphodiesterase-8A binds to and regulates Raf-1 kinase. Proc Natl Acad Sci USA 110:E1533–E1542. doi: 10.1073/pnas.1303004110 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chambers AF (2009) MDA-MB-435 and M14 cell lines: identical but not M14 melanoma? Cancer Res 69:5292–5293. doi: 10.1158/0008-5472.CAN-09-1528 CrossRefPubMedGoogle Scholar
  33. 33.
    Mellor P, Deibert L, Calvert B, Bonham K, Carlsen SA, Anderson DH (2013) CREB3L1 is a metastasis suppressor that represses expression of genes regulating metastasis, invasion, and angiogenesis. Mol Cell Biol 33:4985–4995. doi: 10.1128/MCB.00959-13 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dong H, Zitt C, Auriga C, Hatzelmann A, Epstein PM (2010) Inhibition of PDE3, PDE4 and PDE7 potentiates glucocorticoid-induced apoptosis and overcomes glucocorticoid resistance in CEM T leukemic cells. Biochem Pharmacol 79:321–329. doi: 10.1016/j.bcp.2009.09.001 CrossRefPubMedGoogle Scholar
  35. 35.
    Dong H, Claffey KP, Brocke S, Epstein PM (2013) Expression of phosphodiesterase 6 (PDE6) in human breast cancer cells. SpringerPlus 2:680. doi: 10.1186/2193-1801-2-680 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Vang AG, Housley W, Dong H, Basole C, Ben-Sasson SZ, Kream BE, Epstein PM, Clark RB, Brocke S (2013) Regulatory T-cells and cAMP suppress effector T-cells independently of PKA-CREM/ICER: a potential role for Epac. Biochem J 456:463–473. doi: 10.1042/BJ20130064 CrossRefPubMedGoogle Scholar
  37. 37.
    Terry R, Cheung YF, Praestegaard M, Baillie GS, Huston E, Gall I, Adams DR, Houslay MD (2003) Occupancy of the catalytic site of the PDE4A4 cyclic AMP phosphodiesterase by rolipram triggers the dynamic redistribution of this specific isoform in living cells through a cyclic AMP independent process. Cell Signal 15:955–971. doi: 10.1016/S0898-6568(03)00092-5 CrossRefPubMedGoogle Scholar
  38. 38.
    Christian F, Anthony DF, Vadrevu S, Riddell T, Day JP, McLeod R, Adams DR, Baillie GS, Houslay MD (2010) p62 (SQSTM1) and cyclic AMP phosphodiesterase-4A4 (PDE4A4) locate to a novel, reversible protein aggregate with links to autophagy and proteasome degradation pathways. Cell Signal 22:1576–1596. doi: 10.1016/j.cellsig.2010.06.003 CrossRefPubMedGoogle Scholar
  39. 39.
    Day JP, Lindsay B, Riddell T, Jiang Z, Allcock RW, Abraham A, Sookup S, Christian F, Bogum J, Martin EK, Rae RL, Anthony D, Rosair GM, Houslay DM, Huston E, Baillie GS, Klussmann E, Houslay MD, Adams DR (2011) Elucidation of a structural basis for the inhibitor-driven, p62 (SQSTM1)-dependent intracellular redistribution of cAMP phosphodiesterase-4A4 (PDE4A4). J Med Chem 54:3331–3347. doi: 10.1021/jm200070e CrossRefPubMedGoogle Scholar
  40. 40.
    Christian F, Krause E, Houslay MD, Baillie GS (2014) PKA phosphorylation of p62/SQSTM1 regulates PB1 domain interaction partner binding. Biochim Biophys Acta 1843:2765–2774. doi: 10.1016/j.bbamcr.2014.07.021 CrossRefPubMedGoogle Scholar
  41. 41.
    American Cancer Society (2015) Breast cancer key statistics. American Cancer Society, Atlanta. Accessed 20 May 2015
  42. 42.
    Howe AK (2004) Regulation of actin-based cell migration by cAMP/PKA. Biochim Biophys Acta 1692:159–174. doi: 10.1016/j.bbamcr.2004.03.005 CrossRefPubMedGoogle Scholar
  43. 43.
    Howe AK (2011) Cross-talk between calcium and protein kinase A in the regulation of cell migration. Curr Opin Cell Biol 23:554–561. doi: 10.1016/ CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520. doi: 10.1124/pr.58.3.5 CrossRefPubMedGoogle Scholar
  45. 45.
    Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109:366–398. doi: 10.1016/j.pharmthera.2005.07.003 CrossRefPubMedGoogle Scholar
  46. 46.
    Nome T, Thomassen GO, Bruun J, Ahlquist T, Bakken AC, Hoff AM, Rognum T, Nesbakken A, Lorenz S, Sun J, Barros-Silva JD, Lind GE, Myklebost O, Teixeira MR, Meza-Zepeda LA, Lothe RA, Skotheim RI (2013) Common fusion transcripts identified in colorectal cancer cell lines by high-throughput RNA sequencing. Transl Oncol 6:546–553. doi: 10.1593/tlo.13457 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Tinsley HN, Gary BD, Keeton AB, Lu W, Li Y, Piazza GA (2011) Inhibition of PDE5 by sulindac sulfide selectively induces apoptosis and attenuates oncogenic Wnt/beta-catenin-mediated transcription in human breast tumor cells. Cancer Prev Res 4:1275–1284. doi: 10.1158/1940-6207.CAPR-11-0095 CrossRefGoogle Scholar
  48. 48.
    Saravani R, Karami-Tehrani F, Hashemi M, Aghaei M, Edalat R (2012) Inhibition of phosphodiestrase 9 induces cGMP accumulation and apoptosis in human breast cancer cell lines, MCF-7 and MDA-MB-468. Cell Prolif 45:199–206. doi: 10.1111/j.1365-2184.2012.00819.x CrossRefPubMedGoogle Scholar
  49. 49.
    Kung W, Roos W, Eppenberger U (1983) Growth stimulation of human breast cancer MCF-7 cells by dibutyryl cyclic AMP. Cell Biol Int Rep 7:345–351. doi: 10.1016/0309-1651(83)90074-7 CrossRefPubMedGoogle Scholar
  50. 50.
    Fentiman IS, Duhig T, Griffiths AB, Taylor-Papadimitriou J (1984) Cyclic AMP inhibits the growth of human breast cancer cells in defined medium. Mol Biol Med 2:81–88. doi: 10.1016/0022-4731(83)91694-1 PubMedGoogle Scholar
  51. 51.
    Zivadinovic D, Gametchu B, Watson CS (2005) Membrane estrogen receptor-alpha levels in MCF-7 breast cancer cells predict cAMP and proliferation responses. Breast Cancer Res 7:R101–R112. doi: 10.1186/bcr958 CrossRefPubMedGoogle Scholar
  52. 52.
    Spina A, Di Maiolo F, Esposito A, Sapio L, Chiosi E, Sorvillo L, Naviglio S (2012) cAMP elevation down-regulates beta3 integrin and focal adhesion kinase and inhibits leptin-induced migration of MDA-MB-231 breast cancer cells. BioRes Open Access 1:324–332. doi: 10.1089/biores.2012.0270 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Luker KE, Luker GD (2006) Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett 238:30–41. doi: 10.1016/j.canlet.2005.06.021 CrossRefPubMedGoogle Scholar
  54. 54.
    Smith MC, Luker KE, Garbow JR, Prior JL, Jackson E, Piwnica-Worms D, Luker GD (2004) CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 64:8604–8612. doi: 10.1158/0008-5472.CAN-04-1844 CrossRefPubMedGoogle Scholar
  55. 55.
    Fernandis AZ, Prasad A, Band H, Klosel R, Ganju RK (2004) Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene 23:157–167. doi: 10.1038/sj.onc.1206910 CrossRefPubMedGoogle Scholar
  56. 56.
    Lee BC, Lee TH, Avraham S, Avraham HK (2004) Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2:327–338PubMedGoogle Scholar
  57. 57.
    Yang L, Jackson E, Woerner BM, Perry A, Piwnica-Worms D, Rubin JB (2007) Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res 67:651–658. doi: 10.1158/0008-5472.CAN-06-2762 CrossRefPubMedGoogle Scholar
  58. 58.
    Yang H, Rouse J, Lukes L, Lancaster M, Veenstra T, Zhou M, Shi Y, Park YG, Hunter K (2004) Caffeine suppresses metastasis in a transgenic mouse model: a prototype molecule for prophylaxis of metastasis. Clin Exp Metastasis 21:719–735. doi: 10.1007/s10585-004-8251-4 CrossRefPubMedGoogle Scholar
  59. 59.
    Spano D, Marshall JC, Marino N, De Martino D, Romano A, Scoppettuolo MN, Bello AM, Di Dato V, Navas L, De Vita G, Medaglia C, Steeg PS, Zollo M (2013) Dipyridamole prevents triple-negative breast-cancer progression. Clin Exp Metastasis 30:47–68. doi: 10.1007/s10585-012-9506-0 CrossRefPubMedGoogle Scholar
  60. 60.
    Wang C, Schwab LP, Fan M, Seagroves TN, Buolamwini JK (2013) Chemoprevention activity of dipyridamole in the MMTV-PyMT transgenic mouse model of breast cancer. Cancer Prev Res 6:437–447. doi: 10.1158/1940-6207.CAPR-12-0345 CrossRefGoogle Scholar
  61. 61.
    Choudhary S, Sood S, Wang HC (2014) Dipyridamole intervention of breast cell carcinogenesis. Mol Carcinog 53:243–252. doi: 10.1002/mc.21970 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hongli Dong
    • 1
  • Kevin P. Claffey
    • 1
  • Stefan Brocke
    • 2
  • Paul M. Epstein
    • 1
  1. 1.Department of Cell BiologyUniversity of Connecticut Health CenterFarmingtonUnited States
  2. 2.Department of ImmunologyUniversity of Connecticut Health CenterFarmingtonUnited States

Personalised recommendations