Breast Cancer Research and Treatment

, Volume 151, Issue 3, pp 671–678 | Cite as

TP53 germline mutation may affect response to anticancer treatments: analysis of an intensively treated Li–Fraumeni family

  • Sonja Kappel
  • Elisabeth Janschek
  • Brigitte Wolf
  • Margaretha Rudas
  • Bela Teleky
  • Raimund Jakesz
  • Daniela Kandioler


Li–Fraumeni syndrome (LFS) is a rare autosomal dominant inherited disorder associated with the occurrence of a wide spectrum of early-onset malignancies, the most prevalent being breast cancer and sarcoma. The presence of TP53 germline mutations in the majority of LFS patients suggests a genetic basis for the cancer predisposition. No special recommendations for the treatment of LFS patients have been made to date, except that of minimizing radiation. We hypothesized that TP53 germline mutations may be associated not only with cancer predisposition, but also with lack of response to chemo- and radiotherapy. Here, we present an Austrian LFS family whose members were intensively treated with chemo- and radiotherapy due to cancers that occurred at a predominantly young age, including eight breast cancers in six patients. Material from seven family members was screened for p53 mutation by Sanger sequencing and immunohistochemistry. A rare missense mutation in the tetramerization domain of exon 10 of the TP53 gene was found to segregate with malignant disease in this family. Lack of response to various chemotherapies and radiotherapy could be ascertained by histopathology of surgical specimens after neoadjuvant treatment, by cancer relapse occurring while receiving adjuvant systemic treatment and by the occurrence of second primaries in areas of adjuvant radiation. Our observations suggest that current standards of cancer treatment may not be valid for patients with LFS. In patients with TP53 germline mutation, cytotoxic treatment may bear not only the risk of tumor induction but also the risk of treatment failure.


Li–Fraumeni syndrome p53 Cytotoxic treatment Radiation 



Cyclophosphamide, methotrexate and 5-fluorouracil


Formalin-fixed paraffin-embedded tissue




Li–Fraumeni syndrome


Peripheral blood mononuclear cells


Polymerase chain reaction



The authors are grateful to the LFS family members for support in data collection and for assistance in completing the pedigree.

Conflict of interest

Sonja Kappel is a part-time employee of MARK53 LTD Vienna. Daniela Kandioler is an uncompensated consultant and holds a leadership position at MARK53 LTD Vienna. Other authors have no conflicts of interest to declare.

Ethical standards

The Medical University of Vienna commits to the principles of the Declaration of Helsinki, and thus ethical guidelines were observed in all procedures concerning the LFS family. The p53 Research Group (Medical University of Vienna) received approval for TP53 germline testing from the Austrian Federal Ministry of Health and Women.


  1. 1.
    Li FP, Fraumeni JF Jr (1969) Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann Intern Med 71(4):747–752CrossRefPubMedGoogle Scholar
  2. 2.
    Li FP, Fraumeni JF Jr, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA, Miller RW (1988) A cancer family syndrome in twenty-four kindreds. Cancer Res 48(18):5358–5362PubMedGoogle Scholar
  3. 3.
    Kleihues P, Schauble B, zur Hausen A, Esteve J, Ohgaki H (1997) Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol 150(1):1–13PubMedCentralPubMedGoogle Scholar
  4. 4.
    Varley JM (2003) Germline TP53 mutations and Li–Fraumeni syndrome. Hum Mutat 21(3):313–320CrossRefPubMedGoogle Scholar
  5. 5.
    Ruijs MW, Verhoef S, Rookus MA, Pruntel R, van der Hout AH, Hogervorst FB, Kluijt I, Sijmons RH, Aalfs CM, Wagner A, Ausems MG, Hoogerbrugge N, van Asperen CJ, Gomez Garcia EB, Meijers-Heijboer H, Ten Kate LP, Menko FH, van ‘t Veer LJ (2010) TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: mutation detection rate and relative frequency of cancers in different familial phenotypes. J Med Genet 47(6):421–428. doi: 10.1136/jmg.2009.073429 CrossRefPubMedGoogle Scholar
  6. 6.
    NCCN (2014) National comprehensive cancer network. Genetic/familial high-risk assessment: breast and ovarian. Version 1. Available at:
  7. 7.
    McBride KA, Ballinger ML, Killick E, Kirk J, Tattersall MH, Eeles RA, Thomas DM, Mitchell G (2014) Li-Fraumeni syndrome: cancer risk assessment and clinical management. Nat Rev Clin Oncol 11(5):260–271. doi: 10.1038/nrclinonc.2014.41 CrossRefPubMedGoogle Scholar
  8. 8.
    Hisada M, Garber JE, Fung CY, Fraumeni JF Jr, Li FP (1998) Multiple primary cancers in families with Li–Fraumeni syndrome. J Natl Cancer Inst 90(8):606–611CrossRefPubMedGoogle Scholar
  9. 9.
    Nutting C, Camplejohn RS, Gilchrist R, Tait D, Blake P, Knee G, Yao WQ, Ross G, Fisher C, Eeles R (2000) A patient with 17 primary tumours and a germ line mutation in TP53: tumour induction by adjuvant therapy? Clin Oncol (R Coll Radiol) 12(5):300–304Google Scholar
  10. 10.
    Heymann S, Delaloge S, Rahal A, Caron O, Frebourg T, Barreau L, Pachet C, Mathieu MC, Marsiglia H, Bourgier C (2010) Radio-induced malignancies after breast cancer postoperative radiotherapy in patients with Li–Fraumeni syndrome. Radiat Oncol 5:104. doi: 10.1186/1748-717X-5-104 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Limacher JM, Frebourg T, Natarajan-Ame S, Bergerat JP (2001) Two metachronous tumors in the radiotherapy fields of a patient with Li–Fraumeni syndrome. Int J Cancer 96(4):238–242CrossRefPubMedGoogle Scholar
  12. 12.
    Kamihara J, Rana HQ, Garber JE (2014) Germline TP53 mutations and the changing landscape of Li–Fraumeni syndrome. Hum Mutat 35(6):654–662. doi: 10.1002/humu.22559 CrossRefPubMedGoogle Scholar
  13. 13.
    Wallace-Brodeur RR, Lowe SW (1999) Clinical implications of p53 mutations. Cell Mol Life Sci 55(1):64–75CrossRefPubMedGoogle Scholar
  14. 14.
    Hematulin A, Sagan D, Sawanyawisuth K, Seubwai W, Wongkham S (2014) Association between cellular radiosensitivity and G1/G2 checkpoint proficiencies in human cholangiocarcinoma cell lines. Int J Oncol 45(3):1159–1166. doi: 10.3892/ijo.2014.2520 PubMedGoogle Scholar
  15. 15.
    Kandioler D, Zwrtek R, Ludwig C, Janschek E, Ploner M, Hofbauer F, Kuhrer I, Kappel S, Wrba F, Horvath M, Karner J, Renner K, Bergmann M, Karner-Hanusch J, Potter R, Jakesz R, Teleky B, Herbst F (2002) TP53 genotype but not p53 immunohistochemical result predicts response to preoperative short-term radiotherapy in rectal cancer. Ann Surg 235(4):493–498CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    McIlwrath AJ, Vasey PA, Ross GM, Brown R (1994) Cell cycle arrests and radiosensitivity of human tumor cell lines: dependence on wild-type p53 for radiosensitivity. Cancer Res 54(14):3718–3722PubMedGoogle Scholar
  17. 17.
    Kandioler D, Stamatis G, Eberhardt W, Kappel S, Zochbauer-Muller S, Kuhrer I, Mittlbock M, Zwrtek R, Aigner C, Bichler C, Tichy V, Hudec M, Bachleitner T, End A, Muller MR, Roth E, Klepetko W (2008) Growing clinical evidence for the interaction of the p53 genotype and response to induction chemotherapy in advanced non-small cell lung cancer. J Thorac Cardiovasc Surg 135(5):1036–1041. doi: 10.1016/j.jtcvs.2007.10.072 CrossRefPubMedGoogle Scholar
  18. 18.
    Kandioler D, Schoppmann SF, Zwrtek R, Kappel S, Wolf B, Mittlbock M, Kuhrer I, Hejna M, Pluschnig U, Ba-Ssalamah A, Wrba F, Zacherl J, Zacherl J (2014) The biomarker TP53 divides patients with neoadjuvantly treated esophageal cancer into 2 subgroups with markedly different outcomes. A p53 research group study. J Thorac Cardiovasc Surg. doi: 10.1016/j.jtcvs.2014.1006.1079 PubMedGoogle Scholar
  19. 19.
    Sclafani F, Gonzalez D, Cunningham D, Hulkki Wilson S, Peckitt C, Tabernero J, Glimelius B, Cervantes A, Dewdney A, Wotherspoon A, Brown G, Tait D, Oates J, Chau I (2014) TP53 mutational status and cetuximab benefit in rectal cancer: 5-year results of the EXPERT-C trial. J Natl Cancer Inst. doi: 10.1093/jnci/dju121 PubMedGoogle Scholar
  20. 20.
    Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, Ishioka C (2003) Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100(14):8424–8429. doi: 10.1073/pnas.1431692100 CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28(6):622–629. doi: 10.1002/humu.20495 CrossRefPubMedGoogle Scholar
  22. 22.
    Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250(4985):1233–1238CrossRefPubMedGoogle Scholar
  23. 23.
    Achatz MI, Olivier M, Le Calvez F, Martel-Planche G, Lopes A, Rossi BM, Ashton-Prolla P, Giugliani R, Palmero EI, Vargas FR, Da Rocha JC, Vettore AL, Hainaut P (2007) The TP53 mutation, R337H, is associated with Li–Fraumeni and Li–Fraumeni-like syndromes in Brazilian families. Cancer Lett 245(1–2):96–102CrossRefPubMedGoogle Scholar
  24. 24.
    Fiszer-Maliszewska L, Kazanowska B, Padzik J (2009) p53 Tetramerization domain mutations: germline R342X and R342P, and somatic R337G identified in pediatric patients with Li–Fraumeni syndrome and a child with adrenocortical carcinoma. Fam Cancer 8(4):541–546CrossRefPubMedGoogle Scholar
  25. 25.
    Bougeard G, Sesboue R, Baert-Desurmont S, Vasseur S, Martin C, Tinat J, Brugieres L, Chompret A, de Paillerets BB, Stoppa-Lyonnet D, Bonaiti-Pellie C, Frebourg T, The French LFS working group (2008) Molecular basis of the Li–Fraumeni syndrome: an update from the French LFS families. J Med Genet 45(8):535–538. doi: 10.1136/jmg.2008.057570
  26. 26.
    Chene P (2001) The role of tetramerization in p53 function. Oncogene 20(21):2611–2617CrossRefPubMedGoogle Scholar
  27. 27.
    Eeles RA (1995) Germline mutations in the TP53 gene. Cancer Surv 25:101–124PubMedGoogle Scholar
  28. 28.
    Etzold A, Schroder JC, Bartsch O, Zechner U, Galetzka D (2014) Further evidence for pathogenicity of the TP53 tetramerization domain mutation p.Arg342Pro in Li–Fraumeni syndrome. Fam cancer. doi: 10.1007/s10689-014-9754-z Google Scholar
  29. 29.
    Rollenhagen C, Chene P (1998) Characterization of p53 mutants identified in human tumors with a missense mutation in the tetramerization domain. Int J Cancer 78(3):372–376CrossRefPubMedGoogle Scholar
  30. 30.
    Camplejohn RS, Rutherford J (2001) p53 functional assays: detecting p53 mutations in both the germline and in sporadic tumours. Cell Prolif 34(1):1–14CrossRefPubMedGoogle Scholar
  31. 31.
    Meinhold-Heerlein I, Ninci E, Ikenberg H, Brandstetter T, Ihling C, Schwenk I, Straub A, Schmitt B, Bettendorf H, Iggo R, Bauknecht T (2001) Evaluation of methods to detect p53 mutations in ovarian cancer. Oncology 60(2):176–188CrossRefPubMedGoogle Scholar
  32. 32.
    Olivier M, Langerod A, Carrieri P, Bergh J, Klaar S, Eyfjord J, Theillet C, Rodriguez C, Lidereau R, Bieche I, Varley J, Bignon Y, Uhrhammer N, Winqvist R, Jukkola-Vuorinen A, Niederacher D, Kato S, Ishioka C, Hainaut P, Borresen-Dale AL (2006) The clinical value of somatic TP53 gene mutations in 1794 patients with breast cancer. Clin Cancer Res 12(4):1157–1167. doi: 10.1158/1078-0432.CCR-05-1029 CrossRefPubMedGoogle Scholar
  33. 33.
    Faille A, De Cremoux P, Extra JM, Linares G, Espie M, Bourstyn E, De Rocquancourt A, Giacchetti S, Marty M, Calvo F (1994) p53 mutations and overexpression in locally advanced breast cancers. Br J Cancer 69(6):1145–1150CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Izawa N, Matsumoto S, Manabe J, Tanizawa T, Hoshi M, Shigemitsu T, Machinami R, Kanda H, Takeuchi K, Miki Y, Arai M, Shirahama S, Kawaguchi N (2008) A Japanese patient with Li–Fraumeni syndrome who had nine primary malignancies associated with a germline mutation of the p53 tumor-suppressor gene. Int J Clin Oncol 13(1):78–82CrossRefPubMedGoogle Scholar
  35. 35.
    Salmon A, Amikam D, Sodha N, Davidson S, Basel-Vanagaite L, Eeles RA, Abeliovich D, Peretz T (2007) Rapid development of post-radiotherapy sarcoma and breast cancer in a patient with a novel germline ‘de-novo’ TP53 mutation. Clin Oncol (R Coll Radiol) 19(7):490–493CrossRefGoogle Scholar
  36. 36.
    Warren S, Sommer GN (1936) Fibrosarcoma of the soft parts with special reference to recurrence and metastasis. Arch Surg 33:425–450CrossRefGoogle Scholar
  37. 37.
    Sheppard DG, Libshitz HI (2001) Post-radiation sarcomas: a review of the clinical and imaging features in 63 cases. Clin Radiol 56(1):22–29. doi: 10.1053/crad.2000.0599 CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang SS, Huang QY, Yang H, Xie X, Luo KJ, Wen J, Cai XL, Yang F, Hu Y, Fu JH (2013) Correlation of p53 status with the response to chemotherapy-based treatment in esophageal cancer: a meta-analysis. Ann Surg Oncol 20(7):2419–2427. doi: 10.1245/s10434-012-2859-4 CrossRefPubMedGoogle Scholar
  39. 39.
    Kandioler-Eckersberger D, Ludwig C, Rudas M, Kappel S, Janschek E, Wenzel C, Schlagbauer-Wadl H, Mittlbock M, Gnant M, Steger G, Jakesz R (2000) TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin Cancer Res 6(1):50–56PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sonja Kappel
    • 1
  • Elisabeth Janschek
    • 2
  • Brigitte Wolf
    • 1
  • Margaretha Rudas
    • 3
  • Bela Teleky
    • 4
  • Raimund Jakesz
    • 4
  • Daniela Kandioler
    • 4
  1. 1.Department of Surgery, Surgical ResearchMedical University of ViennaViennaAustria
  2. 2.Department of Gynecology and ObstetricsHospital VillachVillachAustria
  3. 3.Department of PathologyMedical University of ViennaViennaAustria
  4. 4.Department of General SurgeryMedical University of ViennaViennaAustria

Personalised recommendations