Skip to main content

Advertisement

Log in

Effects of conventional neoadjuvant chemotherapy for breast cancer on tumor angiogenesis

  • Clinical Trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The effects of breast cancer conventional chemotherapy on tumor angiogenesis need to be further characterized. Neoadjuvant chemotherapy is an ideal model to evaluate the results of chemotherapy, allowing intra-patient direct comparison of antitumor and antiangiogenic effects. We sought to analyze the effect of neoadjuvant chemotherapy on tumor angiogenesis and its clinical significance in breast cancer. Breast cancer patients (n = 108) treated with neoadjuvant sequential anthracyclines and taxanes were studied. Pre- and post-chemotherapy microvessel density (MVD) and mean vessel size (MVS) were analyzed after CD34 immunohistochemistry and correlated with tumor expression of pro- and antiangiogenic factors (VEGFA, THBS1, HIF1A, CTGF, and PDGFA) by qRT-PCR. Angiogenic measures at diagnosis varied among breast cancer subtypes. Pre-treatment higher MVS was associated with triple-negative subtype and more advanced disease. Higher MVS was correlated with higher VEGFA (p = 0.003), while higher MVD was correlated with lower antiangiogenic factors expression (THBS1, p < 0.0001; CTGF, p = 0.001). Increased angiogenesis at diagnosis (high MVS and glomeruloid microvascular proliferation) and higher VEGFA expression were associated with tumor recurrence (p = 0.048 and 0.009, respectively). Chemotherapy-induced angiogenic response (defined as decreased MVD) was present in 35.2 % of patients. This response correlated with an increase in antiangiogenic factors (THBS1) without changes in VEGFA expression, and it was associated with tumor downstaging, but not with clinical response, pathologic complete response, or prognosis. Global effects of chemotherapy mainly consisted in an increased expression of antiangiogenic factors (THBS1, CTGF), with significant changes neither of tumor VEGFA nor of MVS. Conventionally scheduled neoadjuvant chemotherapy exerts antiangiogenic effects, through an increase in antiangiogenic factors, THBS1 and CTGF, but the expression of VEGFA is maintained after treatment. Better markers of angiogenic response and a better understanding of the cooperation of chemotherapy and antiangiogenic therapy in the neoadjuvant clinical scenario are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CT:

Chemotherapy

MVD:

Microvessel density

MVS:

Mean vessel size

AR:

Angiogenic response

pCR:

Pathologic complete response

HR:

Hormone receptor

References

  1. Schneider BP, Gray RJ, Radovich M et al (2013) Prognostic and predictive value of tumor vascular endothelial growth factor gene amplification in metastatic breast cancer treated with paclitaxel with and without bevacizumab; results from ECOG 2100 trial. Clin Cancer Res 19:1281–1289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Miles DW, Diéras V, Cortés J et al (2013) First-line bevacizumab in combination with chemotherapy for HER2-negative metastatic breast cancer: pooled and subgroup analyses of data from 2447 patients. Ann Oncol 24:2773–2780

    Article  CAS  PubMed  Google Scholar 

  3. Sledge GW (2015) Anti-vascular endothelial growth factor therapy in breast cancer: game over? J Clin Oncol 33:133–135

    Article  CAS  PubMed  Google Scholar 

  4. Bear HD, Tang G, Rastogi P et al (2012) Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N Engl J Med 366:310–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Von Minckwitz G, Eidtmann H, Rezai M et al (2012) Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N Engl J Med 366:299–309

    Article  Google Scholar 

  6. Grant DS, Williams TL, Zahaczewsky M, Dicker AP (2003) Comparison of antiangiogenic activities using paclitaxel (taxol) and docetaxel (taxotere). Int J Cancer 104:121–129

    Article  CAS  PubMed  Google Scholar 

  7. Tonini G, Schiavon G, Silletta M et al (2007) Antiangiogenic properties of metronomic chemotherapy in breast cancer. Future Oncol 3:183–190

    Article  CAS  PubMed  Google Scholar 

  8. Tas F, Duranyildiz D, Soydinc HO et al (2008) Effect of maximum-tolerated doses and low-dose metronomic chemotherapy on serum vascular endothelial growth factor and thrombospondin-1 levels in patients with advanced nonsmall cell lung cancer. Cancer Chemother Pharmacol 61:721–725

    Article  CAS  PubMed  Google Scholar 

  9. Makris A, Powles TJ, Kakolyris S et al (1999) Reduction in angiogenesis after neoadjuvant chemoendocrine therapy in patients with operable breast carcinoma. Cancer 85:1996–2000

    Article  CAS  PubMed  Google Scholar 

  10. Baena-Cañada JM, Palomo González MJ, Arriola Arellano E et al (2008) Evolution of angiogenesis following anthracycline-based neoadjuvant chemotherapy in breast cancer. Med Clin 130:721–725

    Article  Google Scholar 

  11. Honkoop AH, van Diest PJ, de Jong JS et al (1998) Prognostic role of clinical, pathological and biological characteristics in patients with locally advanced breast cancer. Br J Cancer 77:621–626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Honkoop AH, Pinedo HM, De Jong JS et al (1997) Effects of chemotherapy on pathologic and biologic characteristics of locally advanced breast cancer. Am J Clin Pathol 107:211–218

    CAS  PubMed  Google Scholar 

  13. Wedam SB, Low JA, Yang SX et al (2006) Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J Clin Oncol 24:769–777

    Article  CAS  PubMed  Google Scholar 

  14. Yang SX, Steinberg SM, Nguyen D et al (2008) Gene expression profile and angiogenic marker correlates with response to neoadjuvant bevacizumab followed by bevacizumab plus chemotherapy in breast cancer. Clin Cancer Res 14:5893–5899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bottini A, Berruti A, Bersiga A et al (2002) Changes in microvessel density as assessed by CD34 antibodies after primary chemotherapy in human breast cancer. Clin Cancer Res 8:1816–1821

    CAS  PubMed  Google Scholar 

  16. Beresford MJ, Harris AL, Ah-See M et al (2006) The relationship of the neo-angiogenic marker, endoglin, with response to neoadjuvant chemotherapy in breast cancer. Br J Cancer 95:1683–1688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Miller KD, Soule SE, Calley C et al (2005) Randomized phase II trial of the anti-angiogenic potential of doxorubicin and docetaxel; primary chemotherapy as Biomarker Discovery Laboratory. Breast Cancer Res Treat 89:187–197

    Article  CAS  PubMed  Google Scholar 

  18. Akslen LA, Straume O, Geisler S et al (2011) Glomeruloid microvascular proliferation is associated with lack of response to chemotherapy in breast cancer. Br J Cancer 105:9–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  20. Holm S (1979) A simple sequentially rejective multiple tests procedure. Scand J Stat 6:65–70

    Google Scholar 

  21. Uzzan B, Nicolas P, Cucherat M, Perret G-Y (2004) Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res 64:2941–2955

    Article  CAS  PubMed  Google Scholar 

  22. Mikalsen LTG, Dhakal HP, Bruland ØS et al (2013) The clinical impact of mean vessel size and solidity in breast carcinoma patients. PLoS One 8:e75954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Yee KO, Connolly CM, Duquette M et al (2009) The effect of thrombospondin-1 on breast cancer metastasis. Breast Cancer Res Treat 114:85–96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Nagy JA, Chang S-H, Dvorak AM, Dvorak HF (2009) Why are tumour blood vessels abnormal and why is it important to know? Br J Cancer 100:865–869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Guidi AJ, Berry DA, Broadwater G et al (2002) Association of angiogenesis and disease outcome in node-positive breast cancer patients treated with adjuvant cyclophosphamide, doxorubicin, and fluorouracil: a Cancer and Leukemia Group B correlative science study from protocols 8541/8869. J Clin Oncol 20:732–742

    Article  CAS  PubMed  Google Scholar 

  26. Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13:871–882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Van den Eynden GG, Van der Auwera I, Van Laere SJ et al (2007) Comparison of molecular determinants of angiogenesis and lymphangiogenesis in lymph node metastases and in primary tumours of patients with breast cancer. J Pathol 213:56–64

    Article  PubMed  Google Scholar 

  28. Maae E, Olsen DA, Steffensen KD et al (2012) Prognostic impact of placenta growth factor and vascular endothelial growth factor a in patients with breast cancer. Breast Cancer Res Treat 133:257–265

    Article  CAS  PubMed  Google Scholar 

  29. Linderholm B, Grankvist K, Wilking N et al (2000) Correlation of vascular endothelial growth factor content with recurrences, survival, and first relapse site in primary node-positive breast carcinoma after adjuvant treatment. J Clin Oncol 18:1423–1431

    CAS  PubMed  Google Scholar 

  30. Bender RJ, Mac Gabhann F (2013) Expression of VEGF and semaphorin genes define subgroups of triple negative breast cancer. PLoS One 8:e61788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Vasudev NS, Goh V, Juttla JK et al (2013) Changes in tumour vessel density upon treatment with anti-angiogenic agents: relationship with response and resistance to therapy. Br J Cancer 109:1230–1242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94:883–893

    Article  PubMed  Google Scholar 

  33. Ebos JML, Mastri M, Lee CR et al (2014) Neoadjuvant antiangiogenic therapy reveals contrasts in primary and metastatic tumor efficacy. EMBO Mol Med 6:1561–1576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Chung AS, Kowanetz M, Wu X et al (2012) Differential drug class-specific metastatic effects following treatment with a panel of angiogenesis inhibitors. J Pathol 227:404–416

    Article  CAS  PubMed  Google Scholar 

  35. Colleoni M, Orlando L, Sanna G et al (2006) Metronomic low-dose oral cyclophosphamide and methotrexate plus or minus thalidomide in metastatic breast cancer: antitumor activity and biological effects. Ann Oncol 17:232–238

    Article  CAS  PubMed  Google Scholar 

  36. Mele T, Generali D, Fox S et al (2010) Anti-angiogenic effect of tamoxifen combined with epirubicin in breast cancer patients. Breast Cancer Res Treat 123:795–804

    Article  CAS  PubMed  Google Scholar 

  37. Lawler PR, Lawler J (2012) Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb Perspect Med 2:a006627

    Article  PubMed Central  PubMed  Google Scholar 

  38. Baar J, Silverman P, Lyons J et al (2009) A vasculature-targeting regimen of preoperative docetaxel with or without bevacizumab for locally advanced breast cancer: impact on angiogenic biomarkers. Clin Cancer Res 15:3583–3590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Jacobs TW, Siziopikou KP, Prioleau JE et al (1998) Do prognostic marker studies on core needle biopsy specimens of breast carcinoma accurately reflect the marker status of the tumor? Mod Pathol 11:259–264

    CAS  PubMed  Google Scholar 

  40. Ryden L, Boiesen P, Jonsson P-E (2004) Assessment of microvessel density in core needle biopsy specimen in breast cancer. Anticancer Res 24:371–376

    PubMed  Google Scholar 

  41. Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26:605–622

    Article  CAS  PubMed  Google Scholar 

  42. Vasudev NS, Reynolds AR (2014) Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 17:471–494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge technical assistance provided by Rosario Martínez-Marín, Miriam Lencina Guardiola (BiobancMur, Nodo 1, IMIB-Arrixaca), Dr. Fara Sáez-Belmonte (SAI-University of Murcia), Lorena Velázquez-Olmos (CRH), and José Antonio López Oliva (HMM).

Conflict of interest

The authors declare that they do not have a financial relationship with the organization that sponsored the research. The authors declare that they have no conflict of interest.

Funding

This work was funded by Fundación Salud 2000 (Ayuda Merck Serono de Investigación en Oncología 2012) and by Instituto de Salud Carlos III (PI/1202877).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Ayala de la Peña.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luengo-Gil, G., González-Billalabeitia, E., Chaves-Benito, A. et al. Effects of conventional neoadjuvant chemotherapy for breast cancer on tumor angiogenesis. Breast Cancer Res Treat 151, 577–587 (2015). https://doi.org/10.1007/s10549-015-3421-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3421-4

Keywords

Navigation