Advertisement

Breast Cancer Research and Treatment

, Volume 150, Issue 1, pp 149–155 | Cite as

Evidence for biological effects of metformin in operable breast cancer: biomarker analysis in a pre-operative window of opportunity randomized trial

  • Sirwan M. Hadad
  • Philip Coates
  • Lee B. Jordan
  • Ryan J. O. Dowling
  • Martin C. Chang
  • Susan J. Done
  • Colin A. Purdie
  • Pamela J. Goodwin
  • Vuk Stambolic
  • Stacy Moulder-Thompson
  • Alastair M. Thompson
Clinical trial

Abstract

Metformin has therapeutic potential against breast cancer, but the mechanisms of action in vivo remain uncertain. This study examined biomarker effects of metformin in primary breast cancer in a preoperative window of opportunity trial. Non-diabetic women with operable invasive breast cancer were randomized to receive open label pre-operative metformin (500 mg daily for 1 week then 1 g twice daily for a further week) or as controls, not receiving metformin. Patients in both arms had a core biopsy pre-randomisation and again at the time of surgery. Immunohistochemistry for phospho-AMPK (pAMPK), phospho-Akt (pAkt), insulin receptor, cleaved caspase-3, and Ki67 was performed on formalin-fixed paraffin-embedded cores, scored blinded to treatment and analysed by paired t test. In metformin-treated patients, significant up-regulation of pAMPK (paired t test, p = 0.04) and down-regulation of pAkt (paired t test, p = 0.043) were demonstrated compared to the control group. Insulin receptor and serum insulin remained similar following metformin treatment compared with a rise in insulin receptor and insulin in controls. Significant falls in Ki67 and cleaved caspase-3 (paired t test, p = 0.044) were seen in the metformin-treated patients but not in the control group. Changes were independent of body mass index. These biomarker data suggest mechanisms for metformin action in vivo in breast cancer patients via up-regulation of tumor pAMPK, down-regulation of pAkt, and suppression of insulin responses reflecting cytostatic rather than cytotoxic mechanisms.

Keywords

Breast cancer Clinical trial Metformin Phospho-AMPK Phospho-Akt Ki67 Caspase-3 Insulin 

Notes

Acknowledgments

The authors are particularly grateful to the patients who were willing to give written informed consent in support of this clinical trial and thank the Tayside Multidisciplinary breast team (Dougal Adamson, Douglas Brown, Emad Elseedawy, Andrew Lee, Denis Mclean, Marta Reis, and Valerie Walker) for supporting patient recruitment and facilitating accrual of clinical materials and clinical data to this study. The trial was conducted through funding from Breast Cancer Research (Scotland), Tenovus Tayside, The Anonymous Trust and Cancer Research-UK.

Conflict of interest

None.

References

  1. 1.
    Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330(7503):1304–1305. doi: 10.1136/bmj.38415.708634.F7 CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM (2009) New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 32(9):1620–1625. doi: 10.2337/dc08-2175 CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Currie CJ, Poole CD, Gale EA (2009) The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 52(9):1766–1777. doi: 10.1007/s00125-009-1440-6 CrossRefPubMedGoogle Scholar
  4. 4.
    Monami M, Lamanna C, Balzi D, Marchionni N, Mannucci E (2009) Sulphonylureas and cancer: a case-control study. Acta Diabetol 46(4):279–284. doi: 10.1007/s00592-008-0083-2 CrossRefPubMedGoogle Scholar
  5. 5.
    Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, Gandini S (2010) Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res 3(11):1451–1461. doi: 10.1158/1940-6207 CAPR-10-0157CrossRefGoogle Scholar
  6. 6.
    Bowker SL, Majumdar SR, Veugelers P, Johnson JA (2006) Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 29(2):254–258CrossRefPubMedGoogle Scholar
  7. 7.
    Landman GW, Kleefstra N, van Hateren KJ, Groenier KH, Gans RO, Bilo HJ (2010) Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 33(2):322–326. doi: 10.2337/dc09-1380 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Lee JH, Kim TI, Jeon SM, Hong SP, Cheon JH, Kim WH (2011) The effects of metformin on the survival of colorectal cancer patients with diabetes mellitus. Int J Cancer J Int Cancer. doi: 10.1002/ijc.26421 Google Scholar
  9. 9.
    Bayraktar S, Hernadez-Aya LF, Lei X, Meric-Bernstam F, Litton JK, Hsu L, Hortobagyi GN, Gonzalez-Angulo AM (2011) Effect of metformin on survival outcomes in diabetic patients with triple receptor-negative breast cancer. Cancer. doi: 10.1002/cncr.26439 Google Scholar
  10. 10.
    Chen TM, Lin CC, Huang PT, Wen CF (2011) Metformin associated with lower mortality in diabetic patients with early stage hepatocellular carcinoma after radiofrequency ablation. J Gastroenterol Hepatol 26(5):858–865. doi: 10.1111/j.1440-1746.2011.06664.x CrossRefPubMedGoogle Scholar
  11. 11.
    Bo S, Ciccone G, Rosato R, Villois P, Appendino G, Ghigo E, Grassi G (2012) Cancer mortality reduction and metformin: a retrospective cohort study in type 2 diabetic patients. Diabetes Obes Metab 14(1):23–29. doi: 10.1111/j.1463-1326.2011.01480.x CrossRefPubMedGoogle Scholar
  12. 12.
    Thompson AM (2014) Molecular pathways: preclinical models and clinical trials with metformin in breast cancer. Clin Cancer Res 20(10):2508–2515. doi: 10.1158/1078-0432.CCR-13-0354 CrossRefPubMedGoogle Scholar
  13. 13.
    Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y, Hartwick W, Hoffman B, Hood N (2002) Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol 20(1):42–51CrossRefPubMedGoogle Scholar
  14. 14.
    Pollak M (2010) Metformin and other biguanides in oncology: advancing the research agenda. Cancer Prev Res 3(9):1060–1065. doi: 10.1158/1940-6207 CAPR-10-0175CrossRefGoogle Scholar
  15. 15.
    Hadad S, Iwamoto T, Jordan L, Purdie C, Bray S, Baker L, Jellema G, Deharo S, Hardie DG, Pusztai L, Moulder-Thompson S, Dewar JA, Thompson AM (2011) Evidence for biological effects of metformin in operable breast cancer: a pre-operative, window-of-opportunity, randomized trial. Breast Cancer Res Treat 128(3):783–794. doi: 10.1007/s10549-011-1612-1 CrossRefPubMedGoogle Scholar
  16. 16.
    Hardie DG (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 25(18):1895–1908. doi: 10.1101/gad.17420111 CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262. doi: 10.1038/nrm3311 CrossRefPubMedGoogle Scholar
  18. 18.
    Hadad SM, Baker L, Quinlan PR, Robertson KE, Bray SE, Thomson G, Kellock D, Jordan LB, Purdie CA, Hardie DG, Fleming S, Thompson AM (2009) Histological evaluation of AMPK signalling in primary breast cancer. BMC Cancer 9:307. doi: 10.1186/1471-2407-9-307 CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Zhuang Y, Miskimins WK (2008) Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1. J Mol Signal 3:18. doi: 10.1186/1750-2187-3-18 CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18(3):283–293. doi: 10.1016/j.molcel.2005.03.027 CrossRefPubMedGoogle Scholar
  21. 21.
    Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M (2006) Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 66(21):10269–10273. doi: 10.1158/0008-5472.CAN-06-1500 CrossRefPubMedGoogle Scholar
  22. 22.
    Hadad SM, Fleming S, Thompson AM (2008) Targeting AMPK: a new therapeutic opportunity in breast cancer. Crit Rev Oncol Hematol 67(1):1–7. doi: 10.1016/j.critrevonc.2008.01.007 CrossRefPubMedGoogle Scholar
  23. 23.
    Goodwin PJ, Stambolic V, Lemieux J, Chen BE, Parulekar WR, Gelmon KA, Hershman DL, Hobday TJ, Ligibel JA, Mayer IA, Pritchard KI, Whelan TJ, Rastogi P, Shepherd LE (2011) Evaluation of metformin in early breast cancer: a modification of the traditional paradigm for clinical testing of anti-cancer agents. Breast Cancer Res Treat 126(1):215–220. doi: 10.1007/s10549-010-1224-1 CrossRefPubMedGoogle Scholar
  24. 24.
    Niraula S, Dowling RJ, Ennis M, Chang MC, Done SJ, Hood N, Escallon J, Leong WL, McCready DR, Reedijk M, Stambolic V, Goodwin PJ (2012) Metformin in early breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res Treat 135(3):821–830. doi: 10.1007/s10549-012-2223-1 CrossRefPubMedGoogle Scholar
  25. 25.
    Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17(5):1474–1481PubMedGoogle Scholar
  26. 26.
    Purdie CA, Jordan LB, McCullough JB, Edwards SL, Cunningham J, Walsh M, Grant A, Pratt N, Thompson AM (2010) HER2 assessment on core biopsy specimens using monoclonal antibody CB11 accurately determines HER2 status in breast carcinoma. Histopathology 56(6):702–707. doi: 10.1111/j.1365-2559.2010.03533.x CrossRefPubMedGoogle Scholar
  27. 27.
    Kalinsky K, Hershman DL (2012) Cracking open window of opportunity trials. J Clin Oncol 30(21):2573–2575. doi: 10.1200/JCO.2012.42.3293 CrossRefPubMedGoogle Scholar
  28. 28.
    Hadad SM, Hardie DG, Appleyard V, Thompson AM (2013) Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle. Clin Transl Oncol. doi: 10.1007/s12094-013-1144-8 PubMedGoogle Scholar
  29. 29.
    Kucab JE, Lee C, Chen CS, Zhu J, Gilks CB, Cheang M, Huntsman D, Yorida E, Emerman J, Pollak M, Dunn SE (2005) Celecoxib analogues disrupt Akt signaling, which is commonly activated in primary breast tumours. Breast Cancer Res 7(5):R796–R807. doi: 10.1186/bcr1294 CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Goodwin PJ, Thompson AM, Stambolic V (2012) Diabetes, metformin, and breast cancer: lilac time? Journal of Clin Oncol 30(23):2812–2814. doi: 10.1200/JCO.2012.42.3319 CrossRefGoogle Scholar
  31. 31.
    Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans AM, Hardie DG (2010) Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 11(6):554–565. doi: 10.1016/j.cmet.2010.04.001 CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Scheen AJ (1996) Clinical pharmacokinetics of metformin. Clinical Pharmacokinet 30(5):359–371CrossRefGoogle Scholar
  33. 33.
    Mann GB, Fahey VD, Feleppa F, Buchanan MR (2005) Reliance on hormone receptor assays of surgical specimens may compromise outcome in patients with breast cancer. J Clin Oncol 23(22):5148–5154. doi: 10.1200/JCO.2005.02.076 CrossRefPubMedGoogle Scholar
  34. 34.
    Bonanni B, Puntoni M, Cazzaniga M, Pruneri G, Serrano D, Guerrieri-Gonzaga A, Gennari A, Trabacca MS, Galimberti V, Veronesi P, Johansson H, Aristarco V, Bassi F, Luini A, Lazzeroni M, Varricchio C, Viale G, Bruzzi P, Decensi A (2012) Dual effect of metformin on breast cancer proliferation in a randomized presurgical trial. J Clin Oncol 30(21):2593–2600. doi: 10.1200/JCO.2011.39.3769 CrossRefPubMedGoogle Scholar
  35. 35.
    Cazzaniga M, DeCensi A, Pruneri G, Puntoni M, Bottiglieri L, Varricchio C, Guerrieri-Gonzaga A, Gentilini OD, Pagani G, Dell’Orto P, Lazzeroni M, Serrano D, Viale G, Bonanni B (2013) The effect of metformin on apoptosis in a breast cancer presurgical trial. Br J Cancer 109(11):2792–2797. doi: 10.1038/bjc.2013.657 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sirwan M. Hadad
    • 1
  • Philip Coates
    • 2
  • Lee B. Jordan
    • 2
  • Ryan J. O. Dowling
    • 3
  • Martin C. Chang
    • 4
  • Susan J. Done
    • 5
  • Colin A. Purdie
    • 2
  • Pamela J. Goodwin
    • 6
  • Vuk Stambolic
    • 3
  • Stacy Moulder-Thompson
    • 7
  • Alastair M. Thompson
    • 8
  1. 1.Academic Department of Surgical OncologyUniversity of SheffieldSheffieldUK
  2. 2.Dundee Cancer CentreDundeeUK
  3. 3.Ontario Cancer InstituteUniversity Health NetworkTorontoCanada
  4. 4.Department of Pathology and Laboratory MedicineMount Sinai HospitalNew YorkUSA
  5. 5.Campbell Family Institute for Breast Cancer Research and Laboratory Medicine ProgramUniversity Health NetworkTorontoCanada
  6. 6.Princess Margaret Hospital and Mount Sinai HospitalTorontoCanada
  7. 7.Department of Breast Medical OncologyHoustonUSA
  8. 8.Department of Surgical Oncology, FCT7.6092M.D. Anderson Cancer CenterHoustonUSA

Personalised recommendations