Breast Cancer Research and Treatment

, Volume 150, Issue 1, pp 9–18 | Cite as

Tyrosine kinase discoidin domain receptors DDR1 and DDR2 are coordinately deregulated in triple-negative breast cancer

  • Kathy A. Toy
  • Rajeshwari R. Valiathan
  • Fernando Núñez
  • Kelley M. Kidwell
  • Maria E. Gonzalez
  • Rafael Fridman
  • Celina G. Kleer
Preclinical Study


Receptor kinases Discoidin Domain Receptors (DDRs) 1 and 2 are emerging as new therapeutic targets in breast cancer (BC). However, the expression of DDR proteins during BC progression and their association with BC subtypes remain poorly defined. Herein we report the first comprehensive immunohistochemical analyses of DDR protein expression in a wide range of breast tissues. DDR1 and DDR2 expression was investigated by immunohistochemistry in 218 samples of normal breast (n = 10), ductal carcinoma in situ (DCIS, n = 10), and invasive carcinomas (n = 198), arrayed in tissue microarrays with comprehensive clinical and follow-up information. Staining was evaluated for cell type, subcellular localization, percentage and intensity (scores 1–4), and association with disease subtype and outcome. In normal epithelium and DCIS, DDR1 was highly expressed, while DDR2 was negative in normal epithelium, and in DCIS it localized to cells at the epithelial-stromal interface. Of the 198 invasive carcinomas, DDR1 was high in 87 (44 %) and low in 103 (52 %), and DDR2 was high in 110 (56 %) and low in 87 (44 %). High DDR2 was associated with high tumor grade (P = 0.002), triple-negative subtype (TNBC) (P < 0.0001), and worse survival (P = 0.037). We discovered a novel concordant deregulation of DDR expression, with a DDR1Low/DDR2High profile significantly associated with TNBC, compared to luminal tumors (P = 0.012), and with worse overall survival. In conclusion, DDR2 upregulation occurs in DCIS, before stromal invasion, and may reflect epithelial-stromal cross-talk. A DDR1Low/DDR2High protein profile is associated with TNBC and may identify invasive carcinomas with worse prognosis.


Discoidin domain receptors DDR1 DDR2 Triple-negative Breast cancer 



This work was supported by NIH grants R01 CA107469, R01 CA125577, and U01 CA154224 (to C.G.K.), and P30 CA46592 (NIH University of Michigan’s Cancer Center Support Grant) to C.K., and R01 CA61986 and SRIG funds from the Karmanos Cancer Institute (to R.F.) and P30 CA 022453 (NIH Karmanos Cancer Institute and Wayne State University’s Cancer Center Support Grant).

Conflict of interest

The authors declare they have no conflicts of interest.

Supplementary material

10549_2015_3285_MOESM1_ESM.pptx (1.1 mb)
Supplementary material 1 (PPTX 1114 kb)


  1. 1.
    Maskarinec G, Pagano IS, Little MA, Conroy SM, Park SY, Kolonel LN (2013) Mammographic density as a predictor of breast cancer survival: the Multiethnic Cohort. Breast Cancer Res 15(1):R7. doi: 10.1186/bcr3378 CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Tice JA, O’Meara ES, Weaver DL, Vachon C, Ballard-Barbash R, Kerlikowske K (2013) Benign breast disease, mammographic breast density, and the risk of breast cancer. J Natl Cancer Inst. doi: 10.1093/jnci/djt124 PubMedCentralPubMedGoogle Scholar
  3. 3.
    Beck AH, Espinosa I, Gilks CB, van de Rijn M, West RB (2008) The fibromatosis signature defines a robust stromal response in breast carcinoma. Lab Invest 88(6):591–601. doi: 10.1038/labinvest.2008.31 CrossRefPubMedGoogle Scholar
  4. 4.
    Fulford LG, Easton DF, Reis-Filho JS, Sofronis A, Gillett CE, Lakhani SR, Hanby A (2006) Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology 49(1):22–34. doi: 10.1111/j.1365-2559.2006.02453.x CrossRefPubMedGoogle Scholar
  5. 5.
    Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4(1):38. doi: 10.1186/1741-7015-4-38 CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Barker HE, Cox TR, Erler JT (2012) The rationale for targeting the LOX family in cancer. Nat Rev Cancer 12(8):540–552. doi: 10.1038/nrc3319 CrossRefPubMedGoogle Scholar
  7. 7.
    Gilkes DM, Chaturvedi P, Bajpai S, Wong CC, Wei H, Pitcairn S, Hubbi ME, Wirtz D, Semenza GL (2013) Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res 73(11):3285–3296. doi: 10.1158/0008-5472.CAN-12-3963 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Valiathan RR, Marco M, Leitinger B, Kleer CG, Fridman R (2012) Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev 31(1–2):295–321. doi: 10.1007/s10555-012-9346-z CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Vogel W, Gish GD, Alves F, Pawson T (1997) The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1(1):13–23CrossRefPubMedGoogle Scholar
  10. 10.
    Fu HL, Valiathan RR, Arkwright R, Sohail A, Mihai C, Kumarasiri M, Mahasenan KV, Mobashery S, Huang P, Agarwal G, Fridman R (2013) Discoidin domain receptors: unique receptor tyrosine kinases in collagen-mediated signaling. J Biol Chem 288(11):7430–7437. doi: 10.1074/jbc.R112.444158 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Leitinger B (2011) Transmembrane collagen receptors. Annu Rev Cell Dev Biol 27:265–290. doi: 10.1146/annurev-cellbio-092910-154013 CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang K, Corsa CA, Ponik SM, Prior JL, Piwnica-Worms D, Eliceiri KW, Keely PJ, Longmore GD (2013) The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol 15(6):677–687. doi: 10.1038/ncb2743 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Vogel WF, Aszodi A, Alves F, Pawson T (2001) Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 21(8):2906–2917CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Faraci-Orf E, McFadden C, Vogel WF (2006) DDR1 signaling is essential to sustain Stat5 function during lactogenesis. J Cell Biochem 97(1):109–121. doi: 10.1002/jcb.20618 CrossRefPubMedGoogle Scholar
  15. 15.
    Roarty K, Serra R (2007) Wnt5a is required for proper mammary gland development and TGF-beta-mediated inhibition of ductal growth. Development 134(21):3929–3939. doi: 10.1242/dev.008250 CrossRefPubMedGoogle Scholar
  16. 16.
    Koh M, Woo Y, Valiathan RR, Jung HY, Park SY, Kim YN, Kim HR, Fridman R, Moon A (2014) Discoidin domain receptor 1 is a novel transcriptional target of ZEB1 in breast epithelial cells undergoing H-Ras-induced epithelial to mesenchymal transition. Int J Cancer. doi: 10.1002/ijc.29154 PubMedGoogle Scholar
  17. 17.
    Kano K, Kitamura A, Matsuwaki T, Morimatsu M, Naito K (2010) Discoidin domain receptor 2 (DDR2) is required for maintenance of spermatogenesis in male mice. Mol Reprod Dev 77(1):29–37. doi: 10.1002/mrd.21093 CrossRefPubMedGoogle Scholar
  18. 18.
    Kano K, Marin de Evsikova C, Young J, Wnek C, Maddatu TP, Nishina PM, Naggert JK (2008) A novel dwarfism with gonadal dysfunction due to loss-of-function allele of the collagen receptor gene, Ddr2, in the mouse. Mol Endocrinol 22(8):1866–1880. doi: 10.1210/me.2007-0310 CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Labrador JP, Azcoitia V, Tuckermann J, Lin C, Olaso E, Manes S, Bruckner K, Goergen JL, Lemke G, Yancopoulos G, Angel P, Martinez C, Klein R (2001) The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Rep 2(5):446–452CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Duncan JS, Whittle MC, Nakamura K, Abell AN, Midland AA, Zawistowski JS, Johnson NL, Granger DA, Jordan NV, Darr DB, Usary J, Kuan PF, Smalley DM, Major B, He X, Hoadley KA, Zhou B, Sharpless NE, Perou CM, Kim WY, Gomez SM, Chen X, Jin J, Frye SV, Earp HS, Graves LM, Johnson GL (2012) Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149(2):307–321. doi: 10.1016/j.cell.2012.02.053S0092-8674(12)00350-9 CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Dejmek J, Leandersson K, Manjer J, Bjartell A, Emdin SO, Vogel WF, Landberg G, Andersson T (2005) Expression and signaling activity of Wnt-5a/discoidin domain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival. Clin Cancer Res 11(2 Pt 1):520–528PubMedGoogle Scholar
  22. 22.
    Turashvili G, Bouchal J, Baumforth K, Wei W, Dziechciarkova M, Ehrmann J, Klein J, Fridman E, Skarda J, Srovnal J, Hajduch M, Murray P, Kolar Z (2007) Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 7:55. doi: 10.1186/1471-2407-7-55 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Ren T, Zhang J, Liu X, Yao L (2013) Increased expression of discoidin domain receptor 2 (DDR2): a novel independent prognostic marker of worse outcome in breast cancer patients. Med Oncol 30(1):397. doi: 10.1007/s12032-012-0397-3 CrossRefPubMedGoogle Scholar
  24. 24.
    Comprehensive molecular portraits of human breast tumours (2012). Nature 490 (7418):61–70. doi: 10.1038/nature11412
  25. 25.
    Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, Sabel MS, Livant D, Weiss SJ, Rubin MA, Chinnaiyan AM (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 100(20):11606–11611CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Volante M, Sperone P, Bollito E, Frangipane E, Rosas R, Daffara F, Terzolo M, Berruti A, Papotti M (2006) Matrix metalloproteinase type 2 expression in malignant adrenocortical tumors: diagnostic and prognostic significance in a series of 50 adrenocortical carcinomas. Mod Pathol 19(12):1563–1569. doi: 10.1038/modpathol.3800683 CrossRefPubMedGoogle Scholar
  27. 27.
    Wu ZQ, Li XY, Hu CY, Ford M, Kleer CG, Weiss SJ (2012) Canonical Wnt signaling regulates Slug activity and links epithelial-mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression. Proc Natl Acad Sci USA 109(41):16654–16659. doi: 10.1073/pnas.1205822109 CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Kowalski PJ, Rubin MA, Kleer CG (2003) E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res 5(6):R217–R222CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Gonzalez ME, Moore HM, Li X, Toy KA, Huang W, Sabel MS, Kidwell KM, Kleer CG (2014) EZH2 expands breast stem cells through activation of NOTCH1 signaling. Proc Natl Acad Sci USA 111(8):3098–3103. doi: 10.1073/pnas.1308953111 CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Yeh YC, Wu CC, Wang YK, Tang MJ (2011) DDR1 triggers epithelial cell differentiation by promoting cell adhesion through stabilization of E-cadherin. Mol Biol Cell 22(7):940–953. doi: 10.1091/mbc.E10-08-0678 CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Castro-Sanchez L, Soto-Guzman A, Guaderrama-Diaz M, Cortes-Reynosa P, Salazar EP (2011) Role of DDR1 in the gelatinases secretion induced by native type IV collagen in MDA-MB-231 breast cancer cells. Clin Exp Metastasis 28(5):463–477. doi: 10.1007/s10585-011-9385-9 CrossRefPubMedGoogle Scholar
  33. 33.
    Richters A, Nguyen HD, Phan T, Simard JR, Grutter C, Engel J, Rauh D (2014) Identification of type II and III DDR2 inhibitors. J Med Chem 57(10):4252–4262. doi: 10.1021/jm500167q CrossRefPubMedGoogle Scholar
  34. 34.
    Eswaramoorthy R, Wang CK, Chen WC, Tang MJ, Ho ML, Hwang CC, Wang HM, Wang CZ (2010) DDR1 regulates the stabilization of cell surface E-cadherin and E-cadherin-mediated cell aggregation. J Cell Physiol 224(2):387–397. doi: 10.1002/jcp.22134 CrossRefPubMedGoogle Scholar
  35. 35.
    Hidalgo-Carcedo C, Hooper S, Chaudhry SI, Williamson P, Harrington K, Leitinger B, Sahai E (2011) Collective cell migration requires suppression of actomyosin at cell–cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol 13(1):49–58. doi: 10.1038/ncb2133 CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Fu HL, Sohail A, Valiathan RR, Wasinski BD, Kumarasiri M, Mahasenan KV, Bernardo MM, Tokmina-Roszyk D, Fields GB, Mobashery S, Fridman R (2013) Shedding of discoidin domain receptor 1 by membrane-type matrix metalloproteinases. J Biol Chem 288(17):12114–12129. doi: 10.1074/jbc.M112.409599 CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Marcotte R, Brown KR, Suarez F, Sayad A, Karamboulas K, Krzyzanowski PM, Sircoulomb F, Medrano M, Fedyshyn Y, Koh JL, van Dyk D, Fedyshyn B, Luhova M, Brito GC, Vizeacoumar FJ, Vizeacoumar FS, Datti A, Kasimer D, Buzina A, Mero P, Misquitta C, Normand J, Haider M, Ketela T, Wrana JL, Rottapel R, Neel BG, Moffat J (2012) Essential gene profiles in breast, pancreatic, and ovarian cancer cells. Cancer Discov 2(2):172–189. doi: 10.1158/2159-8290.CD-11-0224 CrossRefPubMedGoogle Scholar
  38. 38.
    Damiani S, Ludvikova M, Tomasic G, Bianchi S, Gown AM, Eusebi V (1999) Myoepithelial cells and basal lamina in poorly differentiated in situ duct carcinoma of the breast. An immunocytochemical study. Virchows Arch 434(3):227–234CrossRefPubMedGoogle Scholar
  39. 39.
    Polyak K, Hu M (2005) Do myoepithelial cells hold the key for breast tumor progression? J Mammary Gland Biol Neoplasia 10(3):231–247. doi: 10.1007/s10911-005-9584-6 CrossRefPubMedGoogle Scholar
  40. 40.
    Rosen PP (2008) Rosen’s Breast Pathology, 3rd edn, vol I, Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  41. 41.
    Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA, Weinberg RA, Neve RM, Lenburg ME, Thompson EW (2010) Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. J mammary Gland Biol Neoplasia 15(2):235–252. doi: 10.1007/s10911-010-9175-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kathy A. Toy
    • 1
  • Rajeshwari R. Valiathan
    • 2
  • Fernando Núñez
    • 1
  • Kelley M. Kidwell
    • 3
  • Maria E. Gonzalez
    • 1
  • Rafael Fridman
    • 2
  • Celina G. Kleer
    • 1
  1. 1.Department of Pathology and Comprehensive Cancer CenterUniversity of MichiganAnn ArborUSA
  2. 2.Department of Pathology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer InstituteWayne State UniversityDetroitUSA
  3. 3.Department of BiostatisticsUniversity of MichiganAnn ArborUSA

Personalised recommendations