Skip to main content

Advertisement

Log in

Metabolic isoenzyme shifts in cancer as potential novel therapeutic targets

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The functional redundancy of metabolic enzyme expression may present a new strategy for developing targeted therapies in cancer. To satisfy the increased metabolic demand required during neoplastic transformations and proliferation, cancer cells may rely on additional isoforms of a metabolic enzyme to satisfy the increased demand for metabolic precursors, which could subsequently render cancer cells more vulnerable to isoform-specific inhibitors. In this review, we provide a survey of common isoenzyme shifts that have been reported to be important in cancer metabolism and link those to metabolic pathways that currently have drugs in various stages of development. This phenomenon suggests a potentially new therapeutic strategy for the treatment of cancer by identifying shifts in the expression of metabolic isoenzymes between cancer and normal cells. We also delineate other putative metabolic isoenzymes that could be targets for novel targeted therapies for cancer. Changes in isoenzyme expression that occur during neoplastic transformations or in response to environmental pressure in cancer cells may result in isoenzyme diversity that may subsequently render cancer cells more vulnerable to isoform-specific inhibitors due to reliance on a single isoform to perform a vital enzymatic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ureta T (1978) The role of isozymes in metabolism: a model of metabolic pathways as the basis for the biological role of isozymes. Curr Top Cell Regul 13:233–258

    Article  CAS  PubMed  Google Scholar 

  2. Cairns RA, Harris I, McCracken S, Mak TW (2011) Cancer cell metabolism. Cold Spring Harb Symp Quant Biol 76:299–311

    Article  CAS  PubMed  Google Scholar 

  3. Hu J, Locasale JW, Bielas JH, O’Sullivan J, Sheahan K, Cantley LC, Vander Heiden MG, Vitkup D (2013) Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat Biotechnol 31:522–529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Warburg O (1924) On the metabolism of cancer cells. Naturwissenschaften 12:1131–1137

    Article  CAS  Google Scholar 

  5. Teicher BA, Linehan WM, Helman LJ (2012) Targeting cancer metabolism. Clin Cancer Res 18:5537–5545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Muller FL, Colla S, Aquilanti E, Manzo VE, Genovese G, Lee J, Eisenson D, Narurkar R, Deng P, Nezi L et al (2012) Passenger deletions generate therapeutic vulnerabilities in cancer. Nature 488:337–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Pereira da Silva AP, El-Bacha T, Kyaw N, dos Santos RS, da-Silva WS, Almeida FC, Da Poian AT, Galina A (2009) Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate. Biochem J 417:717–726

    Article  CAS  PubMed  Google Scholar 

  8. Yamaguchi R, Perkins G (2012) Challenges in targeting cancer metabolism for cancer therapy. EMBO Rep 13:1034–1035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Zhao Y, Liu H, Liu Z, Ding Y, Ledoux SP, Wilson GL, Voellmy R, Lin Y, Lin W, Nahta R et al (2011) Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res 71:4585–4597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Zhou M, Zhao Y, Ding Y, Liu H, Liu Z, Fodstad O, Riker AI, Kamarajugadda S, Lu J, Owen LB et al (2010) Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer 9:33

    Article  PubMed Central  PubMed  Google Scholar 

  11. Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z, Mitchell R, Bucala R (2002) High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res 62:5881–5887

    CAS  PubMed  Google Scholar 

  12. Jang M, Kim SS, Lee J (2013) Cancer cell metabolism: implications for therapeutic targets. Exp Mol Med 45:e45

    Article  PubMed Central  PubMed  Google Scholar 

  13. Mathupala SP, Ko YH, Pedersen PL (2010) The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta 1797:1225–1230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25:4777–4786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Iqbal MA, Gupta V, Gopinath P, Mazurek S, Bamezai RN (2014) Pyruvate kinase M2 and cancer: an updated assessment. FEBS Lett 588(16):2685–2692

    Article  CAS  PubMed  Google Scholar 

  16. Brawer MK (2005) Lonidamine: basic science and rationale for treatment of prostatic proliferative disorders. Rev Urol 7(Suppl 7):S21–S26

    PubMed Central  PubMed  Google Scholar 

  17. Zhao Y, Butler EB, Tan M (2013) Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4:e532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Sullivan EJ, Kurtoglu M, Brenneman R, Liu H, Lampidis TJ (2013) Targeting cisplatin-resistant human tumor cells with metabolic inhibitors. Cancer Chemother Pharmacol 73(2):417–427

    Article  PubMed  Google Scholar 

  19. Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, Rasku MA, Arumugam S, Dean WL, Eaton J et al (2008) Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 7:110–120

    Article  CAS  PubMed  Google Scholar 

  20. Vander Heiden MG, Christofk HR, Schuman E, Subtelny AO, Sharfi H, Harlow EE, Xian J, Cantley LC (2010) Identification of small molecule inhibitors of pyruvate kinase M2. Biochem Pharmacol 79:1118–1124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Evans MJ, Saghatelian A, Sorensen EJ, Cravatt BF (2005) Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nat Biotechnol 23:1303–1307

    Article  CAS  PubMed  Google Scholar 

  22. Shi Y, Pinto BM (2014) Human lactate dehydrogenase a inhibitors: a molecular dynamics investigation. PLoS ONE 9:e86365

    Article  PubMed Central  PubMed  Google Scholar 

  23. Vander Heiden MG (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10:671–684

    Article  PubMed  Google Scholar 

  24. Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA 94:6658–6663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Koukourakis MI, Giatromanolaki A, Sivridis E, Bougioukas G, Didilis V, Gatter KC, Harris AL (2003) Tumour, angiogenesis research G: lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. Br J Cancer 89:877–885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL, Dang CV (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107:2037–2042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hamanaka RB, Chandel NS (2012) Targeting glucose metabolism for cancer therapy. J Exp Med 209:211–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio AL, Dias SM, Dang CV, Cerione RA (2010) Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18:207–219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Pongratz RL, Kibbey RG, Shulman GI, Cline GW (2007) Cytosolic and mitochondrial malic enzyme isoforms differentially control insulin secretion. J Biol Chem 282:200–207

    Article  CAS  PubMed  Google Scholar 

  30. Bukato G, Kochan Z, Swierczynski J (1995) Different regulatory properties of the cytosolic and mitochondrial forms of malic enzyme isolated from human brain. Int J Biochem Cell Biol 27:1003–1008

    Article  CAS  PubMed  Google Scholar 

  31. Sukhatme VP, Ren J-G (2013) Methods and compositions for malic enzyme 2 (me2) as a target for cancer therapy. Google Patent Application 13/814,614

  32. Hao HX, Khalimonchuk O, Schraders M, Dephoure N, Bayley JP, Kunst H, Devilee P, Cremers CW, Schiffman JD, Bentz BG et al (2009) SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325:1139–1142

    Article  CAS  PubMed  Google Scholar 

  33. Hanahan D (2011) Weinberg RA: hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  34. Furuta E, Okuda H, Kobayashi A, Watabe K (2010) Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim Biophys Acta 1805:141–152

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Cardaci S, Ciriolo MR (2012) TCA cycle defects and cancer: when metabolism tunes redox state. Int J Cell Biol 2012:161837

    Article  PubMed Central  PubMed  Google Scholar 

  36. Oyedotun KS, Lemire BD (2004) The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies. J Biol Chem 279:9424–9431

    Article  CAS  PubMed  Google Scholar 

  37. Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, van der Mey A, Taschner PE, Rubinstein WS, Myers EN et al (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851

    Article  CAS  PubMed  Google Scholar 

  38. Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D, Leigh I, Gorman P, Lamlum H, Rahman S et al (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30:406–410

    Article  CAS  PubMed  Google Scholar 

  39. de-Freitas-Junior JC, Bastos LG, Freire-Neto CA, Rocher BD, Abdelhay ES, Morgado-Diaz JA (2012) N-glycan biosynthesis inhibitors induce in vitro anticancer activity in colorectal cancer cells. J Cell Biochem 113:2957–2966

    Article  CAS  PubMed  Google Scholar 

  40. Munday MR (2002) Regulation of mammalian acetyl-CoA carboxylase. Biochem Soc Trans 30:1059–1064

    Article  CAS  PubMed  Google Scholar 

  41. Yoon S, Lee MY, Park SW, Moon JS, Koh YK, Ahn YH, Park BW, Kim KS (2007) Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. J Biol Chem 282:26122–26131

    Article  CAS  PubMed  Google Scholar 

  42. Bandyopadhyay S, Zhan R, Wang Y, Pai SK, Hirota S, Hosobe S, Takano Y, Saito K, Furuta E, Iiizumi M et al (2006) Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells. Cancer Res 66:5934–5940

    Article  CAS  PubMed  Google Scholar 

  43. Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, Mason J, Huang P, Sawyer SK, Fuerth B, Faubert B et al (2011) Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev 25:1041–1051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Sanchez-Macedo N, Feng J, Faubert B, Chang N, Elia A, Rushing EJ, Tsuchihara K, Bungard D, Berger SL, Jones RG et al (2013) Depletion of the novel p53-target gene carnitine palmitoyltransferase 1C delays tumor growth in the neurofibromatosis type I tumor model. Cell Death Differ 20:659–668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Kennedy EP, Weiss SB (1956) The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem 222:193–214

    CAS  PubMed  Google Scholar 

  46. Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF, Fulton LL, Dooling DJ, Ding L, Mardis ER et al (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  CAS  Google Scholar 

  47. de Molina AR, Rodriguez-Gonzalez A, Gutierrez R, Martinez-Pineiro L, Sanchez J, Bonilla F, Rosell R, Lacal J (2002) Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun 296:580–583

    Article  Google Scholar 

  48. Elledge SJ, Zhou Z, Allen JB (1992) Ribonucleotide reductase: regulation, regulation, regulation. Trends Biochem Sci 17:119–123

    Article  CAS  PubMed  Google Scholar 

  49. Zheng Z, Chen T, Li X, Haura E, Sharma A, Bepler G (2007) DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N Engl J Med 356:800–808

    Article  CAS  PubMed  Google Scholar 

  50. Zhang M, Wang J, Yao R, Wang L (2013) Small interfering RNA (siRNA)-mediated silencing of the M2 subunit of ribonucleotide reductase: a novel therapeutic strategy in ovarian cancer. Int J Gynecol Cancer 23:659–666

    Article  PubMed  Google Scholar 

  51. Bernstein LR (1998) Mechanisms of therapeutic activity for gallium. Pharmacol Rev 50:665–682

    CAS  PubMed  Google Scholar 

  52. Long CW, Levitzki A, Koshland DE Jr (1970) The subunit structure and subunit interactions of cytidine triphosphate synthetase. J Biol Chem 245:80–87

    CAS  PubMed  Google Scholar 

  53. Schimmel KJ, Gelderblom H, Guchelaar HJ (2007) Cyclopentenyl cytosine (CPEC): an overview of its in vitro and in vivo activity. Curr Cancer Drug Targets 7:504–509

    Article  CAS  PubMed  Google Scholar 

  54. Politi PM, Xie F, Dahut W, Ford H Jr, Kelley JA, Bastian A, Setser A, Allegra CJ, Chen AP, Hamilton JM et al (1995) Phase I clinical trial of continuous infusion cyclopentenyl cytosine. Cancer Chemother Pharmacol 36:513–523

    Article  CAS  PubMed  Google Scholar 

  55. Mathupala SP (2011) Metabolic targeting of malignant tumors: small-molecule inhibitors of bioenergetic flux. Recent Pat Anticancer Drug Discov 6:6–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Piatkowska-Jakubas B, Krawczyk-Kulis M, Giebel S, Adamczyk-Cioch M, Czyz A, Maranda EL, Paluszewska M, Palynyczko G, Piszcz J, Holowiecki J (2008) Polish Adult Leukemia G: Use of l-asparaginase in acute lymphoblastic leukemia: recommendations of the polish adult leukemia group. Pol Arch Med Wewn 118:664–669

    CAS  PubMed  Google Scholar 

  57. Ni Y, Schwaneberg U, Sun ZH (2008) Arginine deiminase, a potential anti-tumor drug. Cancer Lett 261:1–11

    Article  CAS  PubMed  Google Scholar 

  58. Kovacevic Z, Morris HP (1972) The role of glutamine in the oxidative metabolism of malignant cells. Cancer Res 32:326–333

    CAS  PubMed  Google Scholar 

  59. Shukla K, Ferraris DV, Thomas AG, Stathis M, Duvall B, Delahanty G, Alt J, Rais R, Rojas C, Gao P et al (2012) Design, synthesis, and pharmacological evaluation of bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors. J Med Chem 55:10551–10563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Murata K, Miyoshi E, Kameyama M, Ishikawa O, Kabuto T, Sasaki Y, Hiratsuka M, Ohigashi H, Ishiguro S, Ito S et al (2000) Expression of N-acetylglucosaminyltransferase V in colorectal cancer correlates with metastasis and poor prognosis. Clin Cancer Res 6:1772–1777

    CAS  PubMed  Google Scholar 

  61. Zhang Z, Sun J, Hao L, Liu C, Ma H, Jia L (2013) Modification of glycosylation mediates the invasive properties of murine hepatocarcinoma cell lines to lymph nodes. PLoS ONE 8:e65218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Mendelsohn RD, Helmerhorst EJ, Cipollo JF, Kukuruzinska MA (2005) A hypomorphic allele of the first N-glycosylation gene, ALG7, causes mitochondrial defects in yeast. Biochim Biophys Acta 1723:33–44

    Article  CAS  PubMed  Google Scholar 

  63. Rose DR (2012) Structure, mechanism and inhibition of Golgi alpha-mannosidase II. Curr Opin Struct Biol 22:558–562

    Article  CAS  PubMed  Google Scholar 

  64. Elbein AD, Szumilo T, Sanford BA, Sharpless KB, Adams C (1987) Effect of isomers of swainsonine on glycosidase activity and glycoprotein processing. Biochemistry 26:2502–2510

    Article  CAS  PubMed  Google Scholar 

  65. Mahoney WC, Duksin D (1980) Separation of tunicamycin homologues by reversed-phase high-performance liquid chromatography. J Chromatogr 198:506–510

    Article  CAS  PubMed  Google Scholar 

  66. Goss PE, Reid CL, Bailey D, Dennis JW (1997) Phase IB clinical trial of the oligosaccharide processing inhibitor swainsonine in patients with advanced malignancies. Clin Cancer Res 3:1077–1086

    CAS  PubMed  Google Scholar 

  67. Zastre JA, Sweet RL, Hanberry BS, Ye S (2013) Linking vitamin B1 with cancer cell metabolism. Cancer Metab 1:16

    Article  PubMed Central  PubMed  Google Scholar 

  68. Zastre JA, Hanberry BS, Sweet RL, McGinnis AC, Venuti KR, Bartlett MG, Govindarajan R (2013) Up-regulation of vitamin B1 homeostasis genes in breast cancer. J Nutr Biochem 24:1616–1624

    Article  CAS  PubMed  Google Scholar 

  69. Thomas AA, De Meese J, Le Huerou Y, Boyd SA, Romoff TT, Gonzales SS, Gunawardana I, Kaplan T, Sullivan F, Condroski K et al (2008) Non-charged thiamine analogs as inhibitors of enzyme transketolase. Bioorg Med Chem Lett 18:509–512

    Article  CAS  PubMed  Google Scholar 

  70. Fawcett WP, Aracava Y, Adler M, Pereira EF, Albuquerque EX (2009) Acute toxicity of organophosphorus compounds in guinea pigs is sex- and age-dependent and cannot be solely accounted for by acetylcholinesterase inhibition. J Pharmacol Exp Ther 328:516–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Dallner G, Brismar K, Chojnacki T, Swiezewska E (2003) Regulation of coenzyme Q biosynthesis and breakdown. BioFactors 18:11–22

    Article  CAS  PubMed  Google Scholar 

  72. Dallner G, Sindelar PJ (2000) Regulation of ubiquinone metabolism. Free Radic Biol Med 29:285–294

    Article  CAS  PubMed  Google Scholar 

  73. Thurnher M, Gruenbacher G, Nussbaumer O (2013) Regulation of mevalonate metabolism in cancer and immune cells. Biochim Biophys Acta 1831:1009–1015

    Article  CAS  PubMed  Google Scholar 

  74. Casey PJ, Seabra MC (1996) Protein prenyltransferases. J Biol Chem 271:5289–5292

    Article  CAS  PubMed  Google Scholar 

  75. Doll RJ, Kirschmeier P, Bishop WR (2004) Farnesyltransferase inhibitors as anticancer agents: critical crossroads. Curr Opin Drug Discov Dev 7:478–486

    CAS  Google Scholar 

  76. Li T, Guo M, Gradishar WJ, Sparano JA, Perez EA, Wang M, Sledg GW (2012) A phase II trial of capecitabine in combination with the farnesyltransferase inhibitor tipifarnib in patients with anthracycline-treated and taxane-resistant metastatic breast cancer: an eastern cooperative oncology group study (E1103). Breast Cancer Res Treat 134:345–352

    Article  CAS  PubMed  Google Scholar 

  77. Rowell CA, Kowalczyk JJ, Lewis MD, Garcia AM (1997) Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J Biol Chem 272:14093–14097

    Article  CAS  PubMed  Google Scholar 

  78. Peterson YK, Kelly P, Weinbaum CA, Casey PJ (2006) A novel protein geranylgeranyltransferase-I inhibitor with high potency, selectivity, and cellular activity. J Biol Chem 281:12445–12450

    Article  CAS  PubMed  Google Scholar 

  79. Korman TP, Crawford JM, Labonte JW, Newman AG, Wong J, Townsend CA, Tsai SC (2010) Structure and function of an iterative polyketide synthase thioesterase domain catalyzing Claisen cyclization in aflatoxin biosynthesis. Proc Natl Acad Sci USA 107:6246–6251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Khosla C, Gokhale RS, Jacobsen JR, Cane DE (1999) Tolerance and specificity of polyketide synthases. Annu Rev Biochem 68:219–253

    Article  CAS  PubMed  Google Scholar 

  81. Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220

    Article  CAS  PubMed  Google Scholar 

  82. Dickschat JS (2011) Biosynthesis and function of secondary metabolites. Beilstein J Org Chem 7:1620–1621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894–901

    Article  CAS  PubMed  Google Scholar 

  84. Herbert RB (2003) The biosynthesis of plant alkaloids and nitrogenous microbial metabolites. Nat Prod Rep 20:494–508

    Article  CAS  PubMed  Google Scholar 

  85. Guengerich FP (2008) Cytochrome p450 and chemical toxicology. Chem Res Toxicol 21:70–83

    Article  CAS  PubMed  Google Scholar 

  86. Guengerich FP, Wu ZL, Bartleson CJ (2005) Function of human cytochrome P450s: characterization of the orphans. Biochem Biophys Res Commun 338:465–469

    Article  CAS  PubMed  Google Scholar 

  87. Guengerich FP (1999) Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 39:1–17

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no competing interests.

Ethical standards

Research conducted for the purpose of this manuscript complies with the current laws of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pusztai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ononye, S.N., Shi, W., Wali, V.B. et al. Metabolic isoenzyme shifts in cancer as potential novel therapeutic targets. Breast Cancer Res Treat 148, 477–488 (2014). https://doi.org/10.1007/s10549-014-3194-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3194-1

Keywords

Navigation